Skip to main content
Log in

Zonal disintegration phenomenon based on triaxial dynamic load test of hollow cylindrical sandstone specimens

基于含圆孔砂岩试样三轴动载压缩试验的分区破裂化现象

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In the process of deep roadway excavation, the zonal disintegration phenomenon of surrounding rocks has attracted a lot of attention from rock mechanics. There are relatively few studies on zonal disintegration of rock specimens in laboratory experiments. In this paper, a split Hopkinson pressure bar device was used to perform compression tests on hollow cylindrical sandstone specimens under different confining pressures. The failure specimen shows zonal disintegration. According to the theoretical analysis of elastic-plastic mechanics, it is found that there is a maximum tensile strain at the elastic-plastic boundary, which leads to annular cracks in the radial direction and the formation of zonal fractures. In the plastic zone of the specimen, there is a large tensile strain near the hole. As a result, it is prone to spalling near the hole. In the elastic zone of the specimen, as the radius increases, the hoop strain is converted from compressive strain to tensile strain, resulting in tensile cracks on the outside of the specimen. The phenomenon was also simulated using ABAQUS. The simulation results are basically consistent with the experiments and can intuitively explain the spalling around the hole and the damage to the specimen.

摘要

在深部巷道开挖过程中出现的围岩分区破裂现象引起了广泛关注, 然而以岩石试样为研究对象 的室内试验对分区破裂现象的研究较少。本文采用霍普金森压杆装置对不同围压下的含圆孔砂岩试样 进行三轴压缩试验, 试样在冲击破坏后均出现分区破裂现象。对试样进行弹塑性分析, 发现在弹塑性 边界处存在的最大拉伸应变是径向环形裂纹和分区破裂形成的主要原因。在试样塑性区的圆孔附近存 在较大的拉伸应变, 导致圆孔附近岩石容易发生剥落; 在试样的弹性区, 环向应变随着半径的增大而 从压应变转换为拉应变, 导致试样周边容易出现拉伸裂纹。采用ABAQUS对试验过程进行模拟, 模拟 结果与试验结果以及理论分析基本一致。相比理论分析, 模拟得出的结果更为直观地解释了圆孔附近 岩石的剥落现象。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Reference

  1. HE Yong-nian, JIANG Bin-song, HAN Lijun, et al, Study of intermit tent zonal fracturing of surrounding rock in deep roadways [J]. Journal of China University of Mining & Technology, 2008, 37(3): 300–304.

    Google Scholar 

  2. ZHOU Jian, LI Xi-bing, MITRI H S. Evaluation method of rockburst: State-of-the-art literature review [J]. Tunnelling and Underground Space Technology, 2018, 81: 632–659. DOI: https://doi.org/10.1016/j.tust.2018.08.029.

    Article  Google Scholar 

  3. DU Kun, YANG Cheng-zhi, SU Rui, et al. Failure properties of cubic granite, marble, and sandstone specimens under true triaxial stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 130: 104309. DOI: https://doi.org/10.1016/j.ijrmms.2020.104309.

    Article  Google Scholar 

  4. WANG Shi-ming, ZHOU Jian, LI Chuan-qi, et al, Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques [J]. Journal of Central South University, 2021, 28(2): 527–542. DOI: https://doi.org/10.1007/s11771-021-4619-8.

    Article  Google Scholar 

  5. QIAN Qi-hu, LI Shu-chen, A review of research on zonal disintegration phenomenon in deep rock mass engineering [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(6): 1278–1284. (in Chinese)

    Google Scholar 

  6. ADAMS G R, JAGER A J, Petroscopic observations of rock fracturing ahead of stope faces in deep-level gold mines [J]. Journal of the Southern African Institute of Mining and Metallurgy, 1980, 80(6): 204–209.

    Google Scholar 

  7. SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground workings, Part II: Rock fracture simulated in equivalent materials [J]. Soviet Mining, 1986, 22(4): 223–232. DOI: https://doi.org/10.1007/BF02500845.

    Article  Google Scholar 

  8. SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al. Zonal disintegration of rocks around underground workings, Part II: Rock fracture simulated in equivalent materials [J]. Soviet Mining, 1986, 22(4): 223–232. DOI: https://doi.org/10.1007/BF02500845.

    Article  Google Scholar 

  9. SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al, Zonal disintegration of rocks around underground mines, part III: Theoretical concepts [J]. Soviet Mining, 1987, 23(1): 1–6. DOI: https://doi.org/10.1007/BF02534034.

    Article  Google Scholar 

  10. SHEMYAKIN E I, FISENKO G L, KURLENYA M V, et al, Zonal disintegration of rocks around underground workings, Part 1: Data of in situ observations [J]. Soviet Mining, 1986, 22(3): 157–168. DOI: https://doi.org/10.1007/BF02500863.

    Article  Google Scholar 

  11. LI Shu-cai, WANG Han-peng, QIAN Qi-hu, et al, In-situ monitoring research on zonal disintegration of surrounding rock mass in deep mine roadways [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1545–1553. (in Chinese)

    Google Scholar 

  12. FENG Xia-ting, GUO Hao-sen, YANG Cheng-xiang, et al. In situ observation and evaluation of zonal disintegration affected by existing fractures in deep hard rock tunneling [J]. Engineering Geology, 2018, 242: 1–11. DOI: https://doi.org/10.1016/j.enggeo.2018.05.019.

    Article  Google Scholar 

  13. ZHU Zhe-ming, WANG Chao, KANG Ji-ming, et al. Study on the mechanism of zonal disintegration around an excavation [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 67: 88–95. DOI: https://doi.org/10.1016/j.ijrmms.2013.12.017.

    Article  Google Scholar 

  14. CHEN Xu-guang, LI Tian-bin, XU Jian-peng, et al. Mechanism of zonal disintegration phenomenon (ZDP) and model test validation [J]. Theoretical and Applied Fracture Mechanics, 2017, 88: 39–50. DOI: https://doi.org/10.1016/j.tafmec.2016.11.007.

    Article  Google Scholar 

  15. SHOU Y D, ZHOU X P, QIAN Q H. A critical condition of the zonal disintegration in deep rock masses: Strain energy density approach [J]. Theoretical and Applied Fracture Mechanics, 2018, 97: 322–332. DOI: https://doi.org/10.1016/j.tafmec.2017.05.024.

    Article  Google Scholar 

  16. ZHANG Qiang-yong, ZHANG Xu-tao, WANG Zhe-chao, et al. Failure mechanism and numerical simulation of zonal disintegration around a deep tunnel under high stress [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 93: 344–355. DOI: https://doi.org/10.1016/j.ijrmms.2017.02.004.

    Article  Google Scholar 

  17. CHEN Hao-xiang, QI Cheng-zhi, WANG Shuo, et al. A simple gradient model for zonal disintegration of the surrounding rock around a deep circular tunnel [J]. Tunnelling and Underground Space Technology, 2019, 91: 103006. DOI: https://doi.org/10.1016/j.tust.2019.103006.

    Article  Google Scholar 

  18. MA Jian-jun, YIN Pei-jie, HUANG Lin-chong, et al. The application of distinct lattice spring model to zonal disintegration within deep rock masses [J]. Tunnelling and Underground Space Technology, 2019, 90: 144–161. DOI: https://doi.org/10.1016/j.tust.2019.04.017.

    Article  Google Scholar 

  19. WU Shun-chuan, CHEN Long, CHENG Zi-qiao. Macro and meso research on the zonal disintegration phenomenon and the mechanism of deep brittle rock mass [J]. Engineering Fracture Mechanics, 2019, 211: 254–268. DOI: https://doi.org/10.1016/j.engfracmech.2019.02.023.

    Article  Google Scholar 

  20. JIA Peng, ZHU Wan-cheng, ZHANG Shi-chao, Effect of heterogeneity on occurrence of zonal disintegration around deep underground openings [J]. International Journal of Mining Science and Technology, 2014, 24(6): 859–864. DOI: https://doi.org/10.1016/j.ijmst.2014.10.020

    Article  Google Scholar 

  21. ZHOU Y X, XIA K, LI X B, et al. Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49: 105–112. DOI: https://doi.org/10.1016/j.ijrmms.2011.10.004.

    Article  Google Scholar 

  22. BING Li-xi. Rock dynamics fundamentals and applications [M]. Beijing: Science Press, 2014. (in Chinese)

    Google Scholar 

  23. YANG Sheng-qi. Experimental study on deformation, peak strength and crack damage behavior of hollow sandstone under conventional triaxial compression [J]. Engineering Geology, 2016, 213: 11–24. DOI: https://doi.org/10.1016/j.enggeo.2016.08.012.

    Article  Google Scholar 

  24. YOU Ming-qing, SU Cheng-dong, Study of strength and failure of hollow cylinders and rings of sandstone under compression-tension stresses [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1096–1105. (in Chinese)

    Google Scholar 

  25. LI X B, LOK T S, ZHAO J, et al, Oscillation elimination in the Hopkinson bar apparatus and resultant complete dynamic stress - strain curves for rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(7): 1055–1060. DOI: https://doi.org/10.1016/S1365-1609(00)00037-X.

    Article  Google Scholar 

  26. YIN Zhi-qiang, LI Xing-hai, JIN J F, et al, Effects of unloading rates of confining pressure on dynamic strength and fragmentation characteristics of rock under impact loads [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1296–1301. (in Chinese)

    Google Scholar 

  27. YIN Zhi-qiang, LI Xi-bing, JIN Jie-fang, et al, Failure characteristics of high stress rock induced by impact disturbance under confining pressure unloading [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(1): 175–184. DOI: https://doi.org/10.1016/s1003-6326(11)61158-8.

    Article  Google Scholar 

  28. JIANG De-yi, FAN Jin-yang, CHEN Jie, et al, Research on effect of unloading rate of confining pressure on capacity expansion damage of salt rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3154–3159. (in Chinese)

    Google Scholar 

  29. LI Xi-bing, ZOU Yang, ZHOU Zi-long, Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method [J]. Rock Mechanics and Rock Engineering, 2014, 47(5): 1693–1709. DOI: https://doi.org/10.1007/s00603-013-0484-6.

    Article  Google Scholar 

  30. WANG Shi-ming, LIU Yun-si, DU Kun, et al, Waveform features and failure patterns of hollow cylindrical sandstone specimens under repetitive impact and triaxial confinements [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2020, 6(4): 57. DOI: https://doi.org/10.1007/s40948-020-00183-9.

    Article  Google Scholar 

  31. WANG Shi-ming, XIONG Xian-rui, LIU Yun-si, et al, Stress–strain relationship of sandstone under confining pressure with repetitive impact [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(2): 39. DOI: https://doi.org/10.1007/s40948-021-00250-9.

    Article  Google Scholar 

  32. WANG Shi-ming, LIU Yun-si, DU Kun, et al. Dynamic failure properties of sandstone under radial gradient stress and cyclical impact loading [J]. Frontiers in Earth Science, 2019, 7: 251. DOI: https://doi.org/10.3389/feart.2019.00251.

    Article  Google Scholar 

  33. WEI Yuan-long, YANG Chun-he, GUO Yin-tong, et al, Experimental research on deformation and fracture characteristics of shale under cyclic loading [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(12): 2262–2271. (in Chinese)

    Google Scholar 

  34. CHEN J G, HE H, ZHANG Y X, Dynamic and static analysis of mechanism of loosen zone in surrounding rock of tunnels [J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1964–1968. (in Chinese)

    Google Scholar 

  35. CHEN Jian-gong, ZHU Cheng-hua, ZHANG Yong-xing, Elastic-plastic-brittle analysis of zonal disintegration within rock mass in deep tunnel [J]. Journal of China Coal Society, 2010, 35(4): 541–545. DOI: https://doi.org/10.13225/j.cnki.jccs.2010.04.010. (in Chinese)

    Google Scholar 

  36. LANG Lin, ZHU Zhe-ming, WANG Han-bing, et al, Effect of loading rates on crack propagating speed, fracture toughness and energy release rate using single-cleavage trapezoidal open specimen under impact loads [J]. Journal of Central South University, 2020, 27(8): 2440–2454. DOI: https://doi.org/10.1007/s11771-020-4460-5.

    Article  Google Scholar 

  37. YANG Wen-dong, LUO Guang-yu, BO Chun-jie, et al, Mechanical properties and reinforcement effect of jointed rock mass with pre-stressed bolt [J]. Journal of Central South University, 2020, 27(12): 3513–3530. DOI: https://doi.org/10.1007/s11771-020-4469-9.

    Article  Google Scholar 

  38. QIU Hao, ZHU Zhe-ming, WANG Meng, et al. Study of the failure properties and tensile strength of rock-mortar interface transition zone using bi-material Brazilian discs [J]. Construction and Building Materials, 2020, 236: 117551. DOI: https://doi.org/10.1016/j.conbuildmat.2019.117551.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhou  (周健).

Additional information

Contributors

WANG Shi-ming and ZHOU Jian developed the overall research objectives and edited the draft of the manuscript. WANG Jia-qi conducted the literature review and wrote the first draft of the manuscript. XIONG Xian-rui, CHEN Zheng-hong and YAN Shi-jun validated the proposed method and wrote the manuscript.

Conflict of interest

WANG Shi-ming, WANG Jia-qi, XIONG Xian-rui, CHEN Zheng-hong, YAN Shi-jun and ZHOU Jian declare that they have no conflict of interest.

Foundation item

Projects(51604109, 52004328) supported by the National Natural Science Foundation of China; Projects(22B0507, 19B193, 20C0796, 21C0317) supported by the Scientific Research Foundation of Hunan Province Education Department, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Sm., Wang, Jq., Xiong, Xr. et al. Zonal disintegration phenomenon based on triaxial dynamic load test of hollow cylindrical sandstone specimens. J. Cent. South Univ. 30, 1311–1324 (2023). https://doi.org/10.1007/s11771-023-5309-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5309-5

Key words

关键词

Navigation