Skip to main content
Log in

Rheology of suspended hybrid nanoparticles in micro-rotating tangent hyperbolic fluid over a stretching surface

微旋转切向双曲混合流体中悬浮混合纳米粒子的流变学

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This communication numerically studies the micro-rotation effects of tangent hyperbolic hybrid nanofluid past a porous sheet. The fluid motion is developed by virtue of linear stretching sheet. This study further incorporates multiple flow and thermal phenomena such as porous media, inclined magnetohydrodynamic (MHD) fluid, Joule heating along with velocity and thermal slip factors. Mathematical formulation prompts a set of non-linear coupled partial differential equations. To achieve a similar solution, similarity variables are introduced. Numerical solution of leading differential equations is attained via Runge-Kutta-Fehlberg 45 (RKF-45) along with shooting technique. Graphical outcomes are obtained to present the physical significance of the relevant parameters. In order to validate the numerical results, comparison is made with the data already published. It is assumed that the fluid velocity reduces with increasing Weissenberg number and permeability parameter. In addition, the angular velocity of the fluid accelerates significantly with an increase in surface condition parameter. It has been established that higher volume percentage of silver and copper nanoparticles has potential to improve the thermal conductivity of the flowing fluid. Hybrid nanofluid plays a significant role in various engineering applications, including nuclear cooling, desalination, machining, refrigeration, heat exchangers, solar collectors, and engine cooling. Furthermore, mixing hybrid nanofluid in the micro-rotating tangent hyperbolic fluid enhances the thermal abilities of the system, that is applied in many mechanical systems that rely on heat transfer. Skin friction coefficient effectively decreases with increasing Weissenberg number while increases for huge velocity slip parameter.

摘要

流体运动通过线性拉伸片而实现。本研究结合多种流动和热现象, 如多孔介质、倾斜磁流体、焦耳热以及速度和热滑移因子, 用数值方法研究了切向双曲混合纳米流体通过多孔薄片的微旋转效应。得到的数学公式是一组非线性耦合偏微分方程。为了得到近似解, 引入了相似性变量。利用Runge-Kutta-Fehlberg 45 (RKF-45)和射门技术, 得到主导微分方程的数值解。用图示法表示相关参数的物理意义。为了验证数值结果, 与已经发表的数据进行比较。假设流体的流速随Weissenberg 数和渗透率的增加而减小, 流体的角速度随表面条件参数的增加而明显著加快。表面摩擦因数随Weissenberg数的增加而有效减小, 随大的速度滑移参数的增大而增大。结果证实, 较高的银和铜纳米颗粒体积分数具有提高流动流体导热率的潜力。混合纳米流体可广泛应用在工程中, 比如核冷却、海水淡化、机加工、制冷、热交换器、太阳能集热器和发动机冷却等。此外, 在微旋转切向双曲流体中混入纳米流体可提高系统的热能力, 可将其应用于依赖热传递的机械系统。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. CHOI S, EASTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles. CONF-951135-29 [R]. Argonne, IL (United States): Argonne National Lab, 1995: ANL/MSD/CP-84938.

  2. ABRAR M N, UL HAQ R, AWAIS M, et al, Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field [J]. Nuclear Engineering and Technology, 2017, 49(8): 1680–1688. DOI: https://doi.org/10.1016/j.net.2017.09.007.

    Article  Google Scholar 

  3. QURESHI I H, AWAIS M, AWAN S E, et al. Influence of radially magnetic field properties in a peristaltic flow with internal heat generation: Numerical treatment [J]. Case Studies in Thermal Engineering, 2021, 26: 101019. DOI: https://doi.org/10.1016/j.csite.2021.101019.

    Article  Google Scholar 

  4. ABRAR M N, SAGHEER M, HUSSAIN S, Entropy generation during peristaltically flowing nanofluid in an axisymmetric channel with flexible walls [J]. Physica Scripta, 2020, 95(3): 035206. DOI: https://doi.org/10.1088/1402-4896/ab4aab.

    Article  Google Scholar 

  5. ABRAR M N, SAGHEER M, HUSSAIN S, Entropy analysis of Hall Current and thermal radiation influenced by cilia with single- and multi-walled carbon nanotubes [J]. Bulletin of Materials Science, 2019, 42(5): 250. DOI: https://doi.org/10.1007/s12034-019-1822-4.

    Article  Google Scholar 

  6. ABRAR M N, SAGHEER M, HUSSIAN S, Entropy analysis of SWCNT & MWCNT flow induced by collecting beating of cilia with porous medium [J]. Journal of Central South University, 2019, 26(8): 2109–2118. DOI: https://doi.org/10.1007/s11771-019-4158-8.

    Article  Google Scholar 

  7. ALI A, SHAH Z, MUMRAIZ S, et al, Entropy generation on MHD peristaltic flow of Cu-water nanofluid with slip conditions [J]. Heat Transfer-Asian Research, 2019, 48(8): 4301–4319. DOI: https://doi.org/10.1002/htj.21593.

    Article  Google Scholar 

  8. ABRAR M N, SAGHEER M, HUSSIAN S. Thermodynamics analysis of Joule heating and internal heat source over an inclined ciliated tube [J]. Physica A: Statistical Mechanics and its Applications, 2020, 549: 123983. DOI: https://doi.org/10.1016/j.physa.2019.123983.

    Article  MathSciNet  MATH  Google Scholar 

  9. ABRAR M N, AWAIS M, Rheology of alumina and silver nanoparticles over an exponentially stretching convective wall [J]. Journal of Computational and Theoretical Nanoscience, 2018, 15(4): 1373–1378. DOI: https://doi.org/10.1166/jctn.2018.7221.

    Article  Google Scholar 

  10. KHO Y B, JUSOH R, ZUKI SALLEH M, et al. Magnetohydrodynamics flow of Ag−TiO2 hybrid nanofluid over a permeable wedge with thermal radiation and viscous dissipation [J]. Journal of Magnetism and Magnetic Materials, 2023, 565: 170284. DOI: https://doi.org/10.1016/j.jmmm.2022.170284.

    Article  Google Scholar 

  11. BHATTI M M, AL-KHALED K, KHAN S U, et al, Darcy-Forchheimer higher-order slip flow of Eyring-Powell nanofluid with nonlinear thermal radiation and bioconvection phenomenon [J]. Journal of Dispersion Science and Technology, 2023, 44(2): 225–235. DOI: https://doi.org/10.1080/01932691.2021.1942035.

    Article  Google Scholar 

  12. SCHIO R D, EUGENIA, IMPIOMBATO A N, et al, Theoretical and numerical study on Buongiornos model with a Couette flow of a nanofluid in a channel with an embedded cavity [J]. Applied Sciences, 2022, 12(15): 7751. https://www.mdpi.com/2076-3417/12/15/7751.

    Article  Google Scholar 

  13. MALEKI H, ALSARRAF J, MOGHANIZADEH A, et al. Heat transfer and nanofluid flow over a porous plate with radiation and slip boundary conditions [J]. Journal of Central South University, 2019, 26(5): 1099–1115. DOI: https://doi.org/10.1007/s11771-019-4074-y.

    Article  Google Scholar 

  14. SARKAR J, GHOSH P, ADIL A. A review on hybrid nanofluids: Recent research, development and applications [J]. Renewable and Sustainable Energy Reviews, 2015, 43: 164–177. DOI: https://doi.org/10.1016/j.rser.2014.11.023.

    Article  Google Scholar 

  15. SURESH S, VENKITARAJ K P, SELVAKUMAR P, et al. Effect of Al2O3−Cu/water hybrid nanofluid in heat transfer [J]. Experimental Thermal and Fluid Science, 2012, 38: 54–60. DOI: https://doi.org/10.1016/j.expthermflusci.2011.11.007.

    Article  Google Scholar 

  16. TOGHRAIE D, CHAHARSOGHI V A, AFRAND M, Measurement of thermal conductivity of ZnO−TiO2/EG hybrid nanofluid [J]. Journal of Thermal Analysis and Calorimetry, 2016, 125(1): 527–535. DOI: https://doi.org/10.1007/s10973-016-5436-4.

    Article  Google Scholar 

  17. HAYAT T, NADEEM S. Heat transfer enhancement with Ag−CuO/water hybrid nanofluid [J]. Results in Physics, 2017, 7: 2317–2324. DOI: https://doi.org/10.1016/j.rinp.2017.06.034.

    Article  Google Scholar 

  18. ESFE M H, AMIRI M K, ALIREZAIE A, Thermal conductivity of a hybrid nanofluid [J]. Journal of Thermal Analysis and Calorimetry, 2018, 134(2): 1113–1122. DOI: https://doi.org/10.1007/s10973-017-6836-9.

    Article  Google Scholar 

  19. SUBHANI M, NADEEM S, Numerical analysis of micropolar hybrid nanofluid [J]. Applied Nanoscience, 2019, 9(4): 447–459. DOI: https://doi.org/10.1007/s13204-018-0926-2.

    Article  Google Scholar 

  20. HUMINIC G, HUMINIC A. Entropy generation of nanofluid and hybrid nanofluid flow in thermal systems: A review [J]. Journal of Molecular Liquids, 2020, 302: 112533. DOI: https://doi.org/10.1016/j.molliq.2020.112533.

    Article  MATH  Google Scholar 

  21. TALEBI ROSTAMI H, FALLAH NAJAFABADI M, HOSSEINZADEH K, et al, Investigation of mixture-based dusty hybrid nanofluid flow in porous media affected by magnetic field using RBF method [J]. International Journal of Ambient Energy, 2022, 43(1): 6425–6435. DOI: https://doi.org/10.1080/01430750.2021.2023041.

    Article  Google Scholar 

  22. GARIA R, RAWAT S K, KUMAR M, et al. Hybrid nanofluid flow over two different geometries with Cattaneo-Christov heat flux model and heat generation: A model with correlation coefficient and probable error [J]. Chinese Journal of Physics, 2021, 74: 421–439. DOI: https://doi.org/10.1016/j.cjph.2021.10.030.

    Article  MathSciNet  Google Scholar 

  23. YASEEN M, RAWAT S K, KUMAR M, Cattaneo-Christov heat flux model in Darcy-Forchheimer radiative flow of MoS2−SiO2/kerosene oil between two parallel rotating disks [J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(19): 10865–10887. DOI: https://doi.org/10.1007/s10973-022-11248-0.

    Article  Google Scholar 

  24. YASEEN M, RAWAT S K, SHAFIQ A, et al, Analysis of heat transfer of mono and hybrid nanofluid flow between two parallel plates in a Darcy porous medium with thermal radiation and heat generation/absorption [J]. Symmetry, 2022, 14(9): 1943. DOI: https://doi.org/10.3390/sym14091943.

    Article  Google Scholar 

  25. YASEEN M, RAWAT S K, KUMAR M, Falkner-Skan problem for a stretching or shrinking wedge with nanoparticle aggregation [J]. Journal of Heat Transfer, 2022, 144(10): 102501. DOI: https://doi.org/10.1115/1.4055046.

    Article  Google Scholar 

  26. YASEEN M, RAWAT S K, KUMAR M, Hybrid nanofluid (MoS2−SiO2/water) flow with viscous dissipation and Ohmic heating on an irregular variably thick convex/concave-shaped sheet in a porous medium [J]. Heat Transfer, 2022, 51(1): 789–817. DOI: https://doi.org/10.1002/htj.22330.

    Article  Google Scholar 

  27. YASEEN M, KUMAR M, RAWAT S K. Assisting and opposing flow of a MHD hybrid nanofluid flow past a permeable moving surface with heat source/sink and thermal radiation [J]. Partial Differential Equations in Applied Mathematics, 2021, 4: 100168. DOI: https://doi.org/10.1016/j.padiff.2021.100168.

    Article  Google Scholar 

  28. GUMBER P, YASEEN M, RAWAT S K, et al. Heat transfer in micropolar hybrid nanofluid flow past a vertical plate in the presence of thermal radiation and suction/injection effects [J]. Partial Differential Equations in Applied Mathematics, 2022, 5: 100240. DOI: https://doi.org/10.1016/j.padiff.2021.100240.

    Article  Google Scholar 

  29. RAWAT S K, KUMAR M, Cattaneo-christov heat flux model in flow of copper water nanofluid through a stretching/shrinking sheet on stagnation point in presence of heat generation/absorption and activation energy [J]. International Journal of Applied and Computational Mathematics, 2020, 6(4): 1–26. DOI: https://doi.org/10.1007/s40819-020-00865-8.

    Article  MathSciNet  MATH  Google Scholar 

  30. NEGI S, RAWAT S K, KUMAR M, Cattaneo-Christov double-diffusion model with Stefan blowing effect on copper-water nanofluid flow over a stretching surface [J]. Heat Transfer, 2021, 50(6): 5485–5515. DOI: https://doi.org/10.1002/htj.22135.

    Article  Google Scholar 

  31. RAWAT S K, MISHRA A, KUMAR M, Numerical study of thermal radiation and suction effects on copper and silver water nanofluids past a vertical Riga plate [J]. Multidiscipline Modeling in Materials and Structures, 2019, 15(4): 714–736.

    Article  Google Scholar 

  32. ERINGEN C A, Theory of micropolar fluids [J]. Journal of Mathematics and Mechanics, 1966, 16(1): 1–18. https://www.jstor.org/stable/24901466.

    MathSciNet  Google Scholar 

  33. ŁUKASZEWICZ G. Micropolar Fluids: Theory and Applications [M]. Boston, MA: Birkhäuser Boston, 1999.

    Book  MATH  Google Scholar 

  34. MUTHU P, RATHISH KUMAR B V, CHANDRA P, A study of micropolar fluid in an annular tube with application to blood flow [J]. Journal of Mechanics in Medicine and Biology, 2008, 8(4): 561–576. DOI: https://doi.org/10.1142/s0219519408002541.

    Article  Google Scholar 

  35. ASHRAF M, KAMAL M A, SYED K S, Numerical simulation of flow of a micropolar fluid between a porous disk and a non-porous disk [J]. Applied Mathematical Modelling, 2009, 33(4): 1933–1943. DOI: https://doi.org/10.1016/j.apm.2008.05.002.

    Article  MATH  Google Scholar 

  36. BHAT A, KATAGI N N, Micropolar fluid flow between a non-porous disk and a porous disk with slip: Keller-box solution [J]. Ain Shams Engineering Journal, 2020, 11(1): 149–159. DOI: https://doi.org/10.1016/j.asej.2019.07.006.

    Article  Google Scholar 

  37. ISLAM M R, NASRIN S, ALAM M M, Unsteady electromagnetic free convection micropolar fluid flow through a porous medium along a vertical porous plate [J]. Open Journal of Applied Sciences, 2020, 10(11): 701–718. DOI: https://doi.org/10.4236/ojapps.2020.1011049.

    Article  Google Scholar 

  38. SIDDIQA S, BEGUM N, HOSSAIN M A, et al. Effect of thermal radiation on conjugate natural convection flow of a micropolar fluid along a vertical surface [J]. Computers & Mathematics with Applications, 2021, 83: 74–83. DOI: https://doi.org/10.1016/j.camwa.2020.01.011.

    Article  MathSciNet  MATH  Google Scholar 

  39. GUEDRI K, AMEER AHAMMAD N, NADEEM S, et al. Insight into the heat transfer of third-grade micropolar fluid over an exponentially stretched surface [J]. Scientific Reports, 2022, 12: 15577. DOI: https://doi.org/10.1038/s41598-022-19124-5.

    Article  Google Scholar 

  40. AHMAD LONE S, ALYAMI M A, SAEED A, et al. MHD micropolar hybrid nanofluid flow over a flat surface subject to mixed convection and thermal radiation [J]. Scientific Reports, 2022, 12: 17283. DOI: https://doi.org/10.1038/s41598-022-21255-8.

    Article  Google Scholar 

  41. KHAN A S, ABRAR M N, UDDIN S, et al. Entropy generation due to micro-rotating Casson’s nanofluid flow over a nonlinear stretching plate: Numerical treatment [J]. Waves in Random and Complex Media, 2022: 1–16. DOI: https://doi.org/10.1080/17455030.2022.2067376.

  42. IBRAHIM W. Magnetohydrodynamics (MHD) flow of a tangent hyperbolic fluid with nanoparticles past a stretching sheet with second order slip and convective boundary condition [J]. Results in Physics, 2017, 7: 3723–3731. DOI: https://doi.org/10.1016/j.rinp.2017.09.041.

    Article  Google Scholar 

  43. ULLAH Z, ZAMAN G, Lie group analysis of magnetohydrodynamic tangent hyperbolic fluid flow towards a stretching sheet with slip conditions [J]. Heliyon, 2017, 3(11): e00443. DOI: https://doi.org/10.1016/j.heliyon.2017.e00443.

    Article  Google Scholar 

  44. ALI A, HUSSAIN R, MAROOF M, Inclined hydromagnetic impact on tangent hyperbolic fluid flow over a vertical stretched sheet [J]. AIP Advances, 2019, 9(12): 125022. DOI: https://doi.org/10.1063/1.5123188.

    Article  Google Scholar 

  45. ASOGWA K K, GOUD B S, ALI SHAH N, et al. Rheology of electromagnetohydrodynamic tangent hyperbolic nanofluid over a stretching Riga surface featuring Dufour effect and activation energy [J]. Scientific Reports, 2022, 12: 14602. DOI: https://doi.org/10.1038/s41598-022-18998-9.

    Article  Google Scholar 

  46. SAKIADIS B C. Boundary-layer behavior on continuous solid surfaces: I, Boundary-layer equations for two-dimensional and axisymmetric flow [J]. AIChE Journal, 1961, 7(1): 26–28. DOI: https://doi.org/10.1002/aic.690070108.

    Article  Google Scholar 

  47. SHEHZAD S A, HAYAT T, ALHUTHALI M S, et al, MHD three-dimensional flow of Jeffrey fluid with Newtonian heating [J]. Journal of Central South University, 2014, 21(4): 1428–1433. DOI: https://doi.org/10.1007/s11771-014-2081-6.

    Article  Google Scholar 

  48. HAYAT T, ASAD S, ALSAEDI A, Flow of Burgers’ fluid over an inclined stretching sheet with heat and mass transfer [J]. Journal of Central South University, 2015, 22(8): 3180–3188. DOI: https://doi.org/10.1007/s11771-015-2855-5.

    Article  Google Scholar 

  49. HUSSAIN T, SHEHZAD S A, ALSAEDI A, et al, Flow of Casson nanofluid with viscous dissipation and convective conditions: A mathematical model [J]. Journal of Central South University, 2015, 22(3): 1132–1140. DOI: https://doi.org/10.1007/s11771-015-2625-4.

    Article  Google Scholar 

  50. GIREESHA B J, UMESHAIAH M, PRASANNAKUMARA B C, et al. Impact of nonlinear thermal radiation on magnetohydrodynamic three dimensional boundary layer flow of Jeffrey nanofluid over a nonlinearly permeable stretching sheet [J]. Physica A: Statistical Mechanics and Its Applications, 2020, 549: 124051. DOI: https://doi.org/10.1016/j.physa.2019.124051.

    Article  MathSciNet  MATH  Google Scholar 

  51. NAVEEN KUMAR R, JYOTHI A M, ALHUMADE H, et al. Impact of magnetic dipole on thermophoretic particle deposition in the flow of Maxwell fluid over a stretching sheet [J]. Journal of Molecular Liquids, 2021, 334: 116494. DOI: https://doi.org/10.1016/j.molliq.2021.116494.

    Article  Google Scholar 

  52. PUNITH GOWDA R J, NAVEEN KUMAR R, PRASANNAKUMARA B C, et al. Exploring magnetic dipole contribution on ferromagnetic nanofluid flow over a stretching sheet: An application of Stefan blowing [J]. Journal of Molecular Liquids, 2021, 335: 116215. DOI: https://doi.org/10.1016/j.molliq.2021.116215.

    Article  Google Scholar 

  53. JAMSHED W, UMA DEVI S S, GOODARZI M, et al. Evaluating the unsteady Casson nanofluid over a stretching sheet with solar thermal radiation: An optimal case study [J]. Case Studies in Thermal Engineering, 2021, 26: 101160. DOI: https://doi.org/10.1016/j.csite.2021.101160.

    Article  Google Scholar 

  54. KHATTAK S, AHMED M, ABRAR M N, et al. Numerical simulation of Cattaneo-Christov heat flux model in a porous media past a stretching sheet [J]. Waves in Random and Complex Media, 2022: 1–20. DOI: https://doi.org/10.1080/17455030.2022.2030503.

  55. WANG Xue-wu, YANG Zheng-ming, QI Ya-dong, et al, Effect of absorption boundary layer on nonlinear flow in low permeability porous media [J]. Journal of Central South University of Technology, 2011, 18(4): 1299–1303. DOI: https://doi.org/10.1007/s11771-011-0836-x.

    Article  Google Scholar 

  56. SHAH Z, ROOMAN M, SHUTAYWI M, Computational analysis of radiative engine oil-based Prandtl-Eyring hybrid nanofluid flow with variable heat transfer using the Cattaneo-Christov heat flux model [J]. RSC Advances, 2023, 13(6): 3552–3560. DOI: https://doi.org/10.1039/d2ra08197k.

    Article  Google Scholar 

  57. SANKAR M, KUMARA SWAMY H A, AL-MDALLAL Q, et al. Non-Darcy nanoliquid buoyant flow and entropy generation analysis in an inclined porous annulus: Effect of source-sink arrangement [J]. Alexandria Engineering Journal, 2023, 68: 239–261. DOI: https://doi.org/10.1016/j.aej.2023.01.016.

    Article  Google Scholar 

  58. ALJALOUD A S M, MANAI Lei-la, TLILI I. Bioconvection flow of Cross nanofluid due to cylinder with activation energy and second order slip features [J]. Case Studies in Thermal Engineering, 2023, 42: 102767. DOI: https://doi.org/10.1016/j.csite.2023.102767.

    Article  Google Scholar 

  59. AKRAM S, ATHAR M, SAEED K, et al. Mathematical simulation of double diffusion convection on peristaltic pumping of Ellis nanofluid due to induced magnetic field in a non-uniform channel: Applications of magnetic nanoparticles in biomedical engineering [J]. Journal of Magnetism and Magnetic Materials, 2023, 569: 170408. DOI: https://doi.org/10.1016/j.jmmm.2023.170408.

    Article  Google Scholar 

  60. IQBAL J, ABBASI F M, ALKINIDRI M, et al. Heat and mass transfer analysis for MHD bioconvection peristaltic motion of Powell-Eyring nanofluid with variable thermal characteristics [J]. Case Studies in Thermal Engineering, 2023, 43: 102692. DOI: https://doi.org/10.1016/j.csite.2022.102692.

    Article  Google Scholar 

  61. ANUAR N S, BACHOK N, Double solutions and stability analysis of micropolar hybrid nanofluid with thermal radiation impact on unsteady stagnation point flow [J]. Mathematics, 2021, 9(3): 276. DOI: https://doi.org/10.3390/math9030276.

    Article  Google Scholar 

  62. JALILPOUR B, JAFARMADAR S, GANJI D D, et al. Heat generation/absorption on MHD stagnation flow of nanofluid towards a porous stretching sheet with prescribed surface heat flux [J]. Journal of Molecular Liquids, 2014, 195: 194–204. DOI: https://doi.org/10.1016/j.molliq.2014.02.021.

    Article  Google Scholar 

  63. ISHAK A, JAFAR K, NAZAR R, et al, MHD stagnation point flow towards a stretching sheet [J]. Physica A: Statistical Mechanics and Its Applications, 2009, 388(17): 3377–3383. DOI: https://doi.org/10.1016/j.physa.2009.05.026.

    Article  Google Scholar 

  64. AKBAR N S, NADEEM S, HAQ R U, et al, Numerical solutions of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet [J]. Indian Journal of Physics, 2013, 87(11): 1121–1124. DOI: https://doi.org/10.1007/s12648-013-0339-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Abrar.

Additional information

Contributors

M. N. ABRAR provided the concept and problem formulation of the manuscript. Salah UDDIN conducted the literature review and converted the whole manuscript from latex to word document. Kamran AKHTAR edited the draft of the manuscript and further improved the language of the manuscript.

Conflict of interest

M. N. ABRAR, Salah UDDIN and Kamran AKHTAR declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrar, M.N., Uddin, S. & Akhtar, K. Rheology of suspended hybrid nanoparticles in micro-rotating tangent hyperbolic fluid over a stretching surface. J. Cent. South Univ. 30, 1231–1245 (2023). https://doi.org/10.1007/s11771-023-5306-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5306-8

Key words

关键词

Navigation