Skip to main content
Log in

Flotation separation of fluorite from calcite by a new depressant curdlan and its mechanism

新型抑制剂可得然胶在萤石与方解石浮选分离中的应用及其机理

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, curdlan was used as an efficient and eco-friendly calcite depressant for flotation of fluorite/calcite. Firstly, the structure and molecular weight of curdlan were characterized. Floatation test results showed that the flotation difference between fluorite and calcite was expanded by curdlan, thus enabling the flotation separation of fluorite/calcite. The selective depression mechanism of calcite by curdlan was investigated. It was found that curdlan was adsorbed by chemical bonding of its hydroxyl group with Ca on the calcite surface, having much greater adsorption capacity for calcite than fluorite, thus selectively depressing calcite. This selective adsorption resulted in the hydrophilic modification of calcite by curdlan in flotation and hindered the hydrophobic modification caused by the subsequent adsorption of sodium oleate. However, sodium oleate could still be adsorbed on its surface due to the weak adsorption of fluorite and curdlan, resulting in hydrophobicity. Therefore, fluorite could be separated from calcite by flotation with curdlan.

摘要

在使用脂肪酸类捕收剂浮选萤石时, 萤石与脉石矿物方解石的可浮性都很高。因此, 必须使用 高效抑制剂使方解石得到抑制。本文采用一种高效、环保的方解石抑制剂可得然胶用于萤石和方解石 的浮选分离。首先, 对可得然胶的结构和分子量进行表征; 然后, 进行浮选试验。结果表明, 可得然 胶的添加扩大了萤石与方解石的可浮性差异, 从而实现了萤石和方解石的浮选分离。通过研究可得然 胶对方解石的选择性抑制机理发现, 可得然胶是通过其分子中羟基与方解石表面的钙形成化学键而进 行吸附的, 其吸附能力远大于萤石, 从而选择性抑制方解石。这种选择性吸附导致了方解石表面在浮 选过程中被可得然胶进行了亲水改性, 并阻碍了NaOl 吸附引起的疏水改性。而可得然胶在萤石表面的 吸附能力较弱, NaOl 仍可吸附在其表面, 产生疏水性。因此, 可得然胶可以作为萤石和方解石浮选分 离时的新型抑制剂。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. AZIZI D, LARACHI F. Surface interactions and flotation behavior of calcite, dolomite and ankerite with alkyl hydroxamic acid bearing collector and sodium silicate [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 537: 126–138. DOI: https://doi.org/10.1016/j.colsurfa.2017.09.054.

    Article  Google Scholar 

  2. CHEN Zhi-jie, REN Zi-jie, GAO Hui-min, et al. Flotation studies of fluorite and barite with sodium petroleum sulfonate and sodium hexametaphosphate [J]. Journal of Materials Research and Technology, 2019, 8(1): 1267–1273. DOI: https://doi.org/10.1016/j.jmrt.2018.10.002.

    Article  Google Scholar 

  3. CHEN Wei, FENG Qi-ming, ZHANG Guo-fan, et al. The effect of sodium alginate on the flotation separation of scheelite from calcite and fluorite [J]. Minerals Engineering, 2017, 113: 1–7. DOI: https://doi.org/10.1016/j.mineng.2017.07.016.

    Article  Google Scholar 

  4. KUPKA N, RUDOLPH M. Froth flotation of scheelite–A review [J]. International Journal of Mining Science and Technology, 2018, 28(3): 373–384. DOI: https://doi.org/10.1016/j.ijmst.2017.12.001.

    Article  Google Scholar 

  5. HE Jing-feng, CHEN Hao, ZHANG Ming-ming, et al. Combined inhibitors of Fe3+, Cu2+ or Al3+ and sodium silicate on the flotation of fluorite and quartz [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 643: 128702. DOI: https://doi.org/10.1016/j.colsurfa.2022.128702.

    Article  Google Scholar 

  6. GAO Zhi-yong, WANG Cong, SUN Wei, et al. Froth flotation of fluorite: A review [J]. Advances in Colloid and Interface Science, 2021, 290: 102382. DOI: https://doi.org/10.1016/j.cis.2021.102382.

    Article  Google Scholar 

  7. ZHANG Zhi-guo, CAO Yi-jun, MA Zi-long, et al. Impact of calcium and gypsum on separation of scheelite from fluorite using sodium silicate as depressant [J]. Separation and Purification Technology, 2019, 215: 249–258. DOI: https://doi.org/10.1016/j.seppur.2019.01.021.

    Article  Google Scholar 

  8. TIAN Jia, XU Long-hua, SUN Wei, et al. Use of Al2(SO4)3 and acidified water glass as mixture depressants in flotation separation of fluorite from calcite and celestite [J]. Minerals Engineering, 2019, 137: 160–170. DOI: https://doi.org/10.1016/j.mineng.2019.04.011.

    Article  Google Scholar 

  9. WANG Zhou-jie, WU Hou-qin, XU Yan-bo, et al. Effect of dissolved fluorite and barite species on the flotation and adsorption behavior of bastnaesite [J]. Separation and Purification Technology, 2020, 237: 116387. DOI: https://doi.org/10.1016/j.seppur.2019.116387.

    Article  Google Scholar 

  10. WEI Qian, DONG Liu-yang, JIAO Fen, et al. Selective flotation separation of fluorite from calcite by using sesbania gum as depressant [J]. Minerals Engineering, 2021, 174: 107239. DOI: https://doi.org/10.1016/j.mineng.2021.107239.

    Article  Google Scholar 

  11. CHEN Chen, HU Yue-hua, ZHU Hai-ling, et al. Inhibition performance and adsorption of polycarboxylic acids in calcite flotation [J]. Minerals Engineering, 2019, 133: 60–68. DOI: https://doi.org/10.1016/j.mineng.2018.12.027.

    Article  Google Scholar 

  12. DONG Liu-yang, JIAO Fen, QIN Wen-qing, et al. Selective flotation of scheelite from calcite using xanthan gum as depressant [J]. Minerals Engineering, 2019, 138: 14–23. DOI: https://doi.org/10.1016/j.mineng.2019.04.030.

    Article  Google Scholar 

  13. YANG Duo, LI Bo-qi, FENG Dong-xia, et al. Flotation separation of smithsonite from calcite with guar gum as depressant [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 650: 129562. DOI: https://doi.org/10.1016/j.colsurfa.2022.129562.

    Article  Google Scholar 

  14. ZHONG Chun-hui, FENG Bo, ZHANG Liang-zhu, et al. Flotation separation of apatite and calcite using gum Arabic as a depressant [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632: 127723. DOI: https://doi.org/10.1016/j.colsurfa.2021.127723.

    Article  Google Scholar 

  15. ZHOU He-peng, YANG Zhi-zhao, ZHANG Yong-bing, et al. Flotation separation of smithsonite from calcite by using flaxseed gum as depressant [J]. Minerals Engineering, 2021, 167: 106904. DOI: https://doi.org/10.1016/j.mineng.2021.106904.

    Article  Google Scholar 

  16. ZHOU He-peng, YANG Zhi-zhao, TANG Xue-kun, et al. Enhancing flotation separation effect of fluorite and calcite with polysaccharide depressant tamarind seed gum [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 624: 126784. DOI: https://doi.org/10.1016/j.colsurfa.2021.126784.

    Article  Google Scholar 

  17. WANG Tao, FENG Bo, GUO Yu-tao, et al. The flotation separation behavior of apatite from calcite using carboxymethyl chitosan as depressant [J]. Minerals Engineering, 2020, 159: 106635. DOI: https://doi.org/10.1016/j.mineng.2020.106635.

    Article  Google Scholar 

  18. SAKR E A E, MASSOUD M I, RAGAEE S. Food wastes as natural sources of lactic acid bacterial exopolysaccharides for the functional food industry: A review [J]. International Journal of Biological Macromolecules, 2021, 189: 232–241. DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.135.

    Article  Google Scholar 

  19. HAN Wen-jie, ZHU Yi-min, GE Wen-cheng, et al. Curdlan as a new depressant of hematite for quartz-hematite reverse flotation separation [J]. Minerals Engineering, 2022, 185: 107708. DOI: https://doi.org/10.1016/j.mineng.2022.107708.

    Article  Google Scholar 

  20. CUI Cong-li, LI Ming-ju, JI Na, et al. Calcium alginate/curdlan/corn starch@calcium alginate macrocapsules for slowly digestible and resistant starch [J]. Carbohydrate Polymers, 2022, 285: 119259. DOI: https://doi.org/10.1016/j.carbpol.2022.119259.

    Article  Google Scholar 

  21. LIANG Ying, ZHU Li, GAO Min-jie, et al. Influence of Tween-80 on the production and structure of water-insoluble curdlan from Agrobacterium sp [J]. International Journal of Biological Macromolecules, 2018, 106: 611–619. DOI: https://doi.org/10.1016/j.ijbiomac.2017.08.052.

    Article  Google Scholar 

  22. YAN Jing-kun, CAI Wu-dan, WANG Chun, et al. Macromolecular behavior, structural characteristics and rheological properties of alkali-neutralization curdlan at different concentrations [J]. Food Hydrocolloids, 2020, 105: 105785. DOI: https://doi.org/10.1016/j.foodhyd.2020.105785.

    Article  Google Scholar 

  23. XU Xin-dong, WANG Qing, XUE Si-ya, et al. Effect of alkali-neutralization treatment on triple-helical aggregates and independent triple helices of curdlan [J]. Carbohydrate Polymers, 2021, 259: 117775. DOI: https://doi.org/10.1016/j.carbpol.2021.117775.

    Article  Google Scholar 

  24. MOHSIN A, SUN Jing-yun, KHAN I M, et al. Sustainable biosynthesis of curdlan from orange waste by using Alcaligenes faecalis: A systematically modeled approach [J]. Carbohydrate Polymers, 2019, 205: 626–635. DOI: https://doi.org/10.1016/j.carbpol.2018.10.047.

    Article  Google Scholar 

  25. MCFADZEAN B, GROENMEYER G. Selective molecular weight adsorption from polydisperse polysaccharide depressants [J]. Minerals Engineering, 2015, 77: 172–178. DOI: https://doi.org/10.1016/j.mineng.2015.03.009.

    Article  Google Scholar 

  26. MCFADZEAN B, DICKS P, GROENMEYER G, et al. The effect of molecular weight on the adsorption and efficacy of polysaccharide depressants [J]. Minerals Engineering, 2011, 24(5): 463–469. DOI: https://doi.org/10.1016/j.mineng.2010.12.015.

    Article  Google Scholar 

  27. FANG Shuai, XU Long-hua, WU Hou-qin, et al. Influence of aluminum — sodium silicate on olivine flotation with sodium oleate [J]. Minerals Engineering, 2019, 143: 106008. DOI: https://doi.org/10.1016/j.mineng.2019.106008.

    Article  Google Scholar 

  28. YANG Si-yuan, XU Yan-ling, LIU Cheng, et al. The anionic flotation of fluorite from barite using gelatinized starch as the depressant [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597: 124794. DOI: https://doi.org/10.1016/j.colsurfa.2020.124794.

    Article  Google Scholar 

  29. LIU Cheng, ZHU Yu-hua, HUANG Kai-hua, et al. Studies of benzyl hydroxamic acid/calcium lignosulphonate addition order in the flotation separation of smithsonite from calcite [J]. International Journal of Mining Science and Technology, 2021, 31(6): 1153–1158. DOI: https://doi.org/10.1016/j.ijmst.2021.09.005.

    Article  Google Scholar 

  30. WANG Meng-tao, HUANG Gang-hong, ZHANG Guo-fan, et al. Selective flotation separation of fluorite from calcite by application of flaxseed gum as depressant [J]. Minerals Engineering, 2021, 168: 106938. DOI: https://doi.org/10.1016/j.mineng.2021.106938.

    Article  Google Scholar 

  31. DONG Liu-yang, WEI Qian, QIN Wen-qing, et al. Effect of iron ions as assistant depressant of citric acid on the flotation separation of scheelite from calcite [J]. Chemical Engineering Science, 2021, 241: 116720. DOI: https://doi.org/10.1016/j.ces.2021.116720.

    Article  Google Scholar 

  32. ZHOU He-peng, YANG Zhi-zhao, ZHANG Yong-bing, et al. Effect of Artemisia sphaerocephala Krasch. Gum on the flotation separation of fluorite from calcite [J]. Minerals Engineering, 2021, 174: 107249. DOI: https://doi.org/10.1016/j.mineng.2021.107249.

    Article  Google Scholar 

  33. CHEN Chen, SUN Wei, ZHU Hai-ling, et al. A novel green depressant for flotation separation of scheelite from calcite [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(8): 2493–2500. DOI: https://doi.org/10.1016/S1003-6326(21)65669-8.

    Article  Google Scholar 

  34. SUN Ruo-fan, LIU Dan, TIAN Xiao-song, et al. The role of copper ion and soluble starch used as a combined depressant in the flotation separation of fluorite from calcite: New insights on the application of modified starch in mineral processing [J]. Minerals Engineering, 2022, 181: 107550. DOI: https://doi.org/10.1016/j.mineng.2022.107550.

    Article  Google Scholar 

  35. CHENG Kai, WU Xi-qing, TANG Hong-hu, et al. The flotation of fine hematite by selective flocculation using sodium polyacrylate [J]. Minerals Engineering, 2022, 176: 107273. DOI: https://doi.org/10.1016/j.mineng.2021.107273.

    Article  Google Scholar 

  36. MOREIRA G F, PEÇANHA E R, MONTE M B M, et al. XPS study on the mechanism of starch-hematite surface chemical complexation [J]. Minerals Engineering, 2017, 110: 96–103. DOI: https://doi.org/10.1016/j.mineng.2017.04.014.

    Article  Google Scholar 

  37. CHEN Yan-fei, TANG Xue-kun. Selective flotation separation of smithsonite from calcite by application of amino trimethylene phosphonic acid as depressant [J]. Applied Surface Science, 2020, 512: 145663. DOI: https://doi.org/10.1016/j.apsusc.2020.145663.

    Article  Google Scholar 

  38. MARTINS J G, CAMARGO S E A, BISHOP T T, et al. Pectin-chitosan membrane scaffold imparts controlled stem cell adhesion and proliferation [J]. Carbohydrate Polymers, 2018, 197: 47–56. DOI: https://doi.org/10.1016/j.carbpol.2018.05.062.

    Article  Google Scholar 

  39. LIU Cheng, ZHU Lei, FU Weng, et al. Investigations of amino trimethylene phosphonic acid as a green and efficient depressant for the flotation separation of apatite from calcite [J]. Minerals Engineering, 2022, 181: 107552. DOI: https://doi.org/10.1016/j.mineng.2022.107552.

    Article  Google Scholar 

  40. WANG Hong-yang, WANG Li-zhong-zheng, YANG Si-yuan, et al. Investigations on the reverse flotation of quartz from hematite using carboxymethyl chitosan as a depressant [J]. Powder Technology, 2021, 393: 109–115. DOI: https://doi.org/10.1016/j.powtec.2021.07.073.

    Article  Google Scholar 

  41. ZHOU He-peng, ZHANG Yong-bing, TANG Xue-kun, et al. Flotation separation of fluorite from calcite by using psyllium seed gum as depressant [J]. Minerals Engineering, 2020, 159: 106514. DOI: https://doi.org/10.1016/j.mineng.2020.106514.

    Article  Google Scholar 

  42. LI Wen-bo, SHI Da, HAN Yue-xin. A selective flotation of fluorite from dolomite using caustic cassava starch and its adsorption mechanism: An experimental and DFT study [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 633: 127876. DOI: https://doi.org/10.1016/j.colsurfa.2021.127876.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-jie Han  (韩文杰) or Yi-min Zhu  (朱一民).

Additional information

Contributors

HAN Wen-jie and ZHU Yi-min developed the overarching research goals and edited the draft of the manuscript. HAN Wen-jie conducted the literature review and wrote the manuscript. GE Wen-cheng validated the proposed method with practical experiments and wrote the first draft of the manuscript. LIU Jie edited the manuscript. LI Yan-jun and LI Wen-bo edited the manuscript.

Foundation item

Projects(51974067, 51974068) supported by the National Natural Science Foundation of China; Project(XLYC2007055) supported by the Liaoning Revitalization Talents Program, China; Project(2022-YQ-10) supported by the Natural Science Foundation of Liaoning Province, China

Conflict of interest

HAN Wen-jie, ZHU Yi-min, GE Wen-cheng, LIU Jie, LI Yan-jun and LI Wen-bo declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Wj., Zhu, Ym., Ge, Wc. et al. Flotation separation of fluorite from calcite by a new depressant curdlan and its mechanism. J. Cent. South Univ. 30, 800–810 (2023). https://doi.org/10.1007/s11771-023-5282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5282-z

Key words

关键词

Navigation