Skip to main content
Log in

Structural and optical properties of chemically deposited Mn-doped ZnO thin films

化学沉积Mn 掺杂ZnO 薄膜的结构和光学性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Pure ZnO and Mn-doped ZnO thin films were deposited by chemical bath deposition met for various Mn doping concentrations. The structural, morphological and optical properties of the prepared films were studied using various techniques. XRD analysis shows hexagonal structured ZnO for all films and peak shift is noticed for Mn-doped films. The crystallite size is found to be increased for Mn doping. The surface morphology of the Mn-doped film shows irregular shape particles that are agglomerated. The transmittance spectra show higher transmittance in the visible region and it decreased for Mn doping, which indicates an increase in optical absorption. The band gap of Mn-doped films is found to be decreasing with Mn doping. The Mn-doped films show higher optical and electrical conductivity in UV region.

摘要

采用化学沉积法制备了纯ZnO 和不同Mn 掺杂浓度的Mn 掺杂ZnO 薄膜, 并对所制备薄膜的结构、形态和光学性能进行了研究。XRD 分析显示, 所有薄膜都呈六角形结构, 但Mn 掺杂的ZnO 薄膜存在峰移。随Mn 掺杂浓度的升高, 晶体尺寸增大。Mn 掺杂ZnO 薄膜表面分布不规则颗粒, 并呈团聚状。Mn 掺杂ZnO 薄膜在可见光区表现出更高的透射率, 但随着Mn 掺杂浓度的升高, 透射率逐渐降低。随Mn 掺杂浓度的升高, 薄膜的带隙减小。Mn 掺杂ZnO 薄膜在紫外区表现出更高的光导率和导电率。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. AGARWAL M B, MALAIDURAI M, SAHOO S, et al. Fabrication and characterization of Mn doped ZnO nanoarrays prepared by two step process [C]//Third International Conference on Material Science, Smart Structures and Applications. Erode, India: AIP Publishing, 2021, 2327: 020010. DOI: https://doi.org/10.1063/5.0040024.

    Google Scholar 

  2. ALSAAD A M, AL-BATAINEH Q M, AHMAD A A, et al. Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: A novel derived mathematical model from the experimental transmission spectra [J]. Optik, 2020, 211: 164641. DOI: https://doi.org/10.1016/j.ijleo.2020.164641.

    Article  Google Scholar 

  3. BILGILI O. The effects of Mn doping on the structural and optical properties of ZnO [J]. Acta Physica Polonica A, 2019, 136(3): 460–466. DOI: https://doi.org/10.12693/aphyspola.136.460.

    Article  Google Scholar 

  4. ALQAISI M M, GHAZAI A J. Structural properties of pure and Sn doped ZnO thin film prepared using sol-gel method [J]. Journal of Physics: Conference Series, 2021, 1999(1): 012051. DOI: https://doi.org/10.1088/1742-6596/1999/1/012051.

    Google Scholar 

  5. MUCHUWENI E, SATHIARAJ T S, NYAKOTYO H. Synthesis and characterization of zinc oxide thin films for optoelectronic applications [J]. Heliyon, 2017, 3(4): e00285. DOI: https://doi.org/10.1016/j.heliyon.2017.e00285.

    Article  Google Scholar 

  6. SRINIVASULU T, SARITHA K, RAMAKRISHNA R K T. Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis [J]. Modern Electronic Materials, 2017, 3(2): 76–85. DOI: https://doi.org/10.1016/j.moem.2017.07.001.

    Article  Google Scholar 

  7. KARTHIKEYAN B, PANDIYARAJAN T, MANGAIYARKARASI K. Optical properties of sol-gel synthesized calcium doped ZnO nanostructures [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 82(1): 97–101. DOI: https://doi.org/10.1016/j.saa.2011.07.005.

    Article  Google Scholar 

  8. MOUZAIA F, DJOUADI D, CHELOUCHE A, et al. Particularities of pure and Al-doped ZnO nanostructures aerogels elaborated in supercritical isopropanol [J]. Arab Journal of Basic and Applied Sciences, 2020, 27(1): 423–430. DOI: https://doi.org/10.1080/25765299.2020.1833484.

    Article  Google Scholar 

  9. TASKIN M, PODDER J. Dielectric properties of pure and cobalt doped zinc oxide thin films prepared by spray pyrolysis [J]. Applied Science Reports, 2014, 3(3): 112–116. DOI: https://doi.org/10.15192/pscp.asr.2014.3.3.112116.

    Google Scholar 

  10. HASSAN A S, ABU BAKAR N H. Structural, optical and morphological properties of pure and silver doped zinc oxide thin films by attuning the deposition layer [J]. Materials Today: Proceedings, 2022, 51: 1376–1380. DOI: https://doi.org/10.1016/j.matpr.2021.11.478.

    Google Scholar 

  11. MONDAL S, BHATTACHARYYA S R, MITRA P. Preparation of Manganese-doped ZnO thin films and their characterization [J]. Bulletin of Materials Science, 2013, 36(2): 223–229. DOI: https://doi.org/10.1007/s12034-013-0462-3.

    Article  Google Scholar 

  12. SHARMA M, BERA K, MISHRA R, et al. Structural, magnetic, and optical properties of Mn2+ doping in ZnO thin films [J]. Surfaces, 2021, 4(4): 268–278. DOI: https://doi.org/10.3390/surfaces4040022.

    Article  Google Scholar 

  13. HLAING OO W M, SARAF L V, ENGELHARD M H, et al. Suppression of conductivity in Mn-doped ZnO thin films [J]. Journal of Applied Physics, 2009, 105(1): 013715. DOI: https://doi.org/10.1063/1.3063730.

    Article  Google Scholar 

  14. MOTE V D, DARGAD J S, DOLE B N. Effect of Mn doping concentration on structural, morphological and optical studies of ZnO nano-particles [J]. Nanoscience and Nanoengineering, 2013, 1(2): 116–122. DOI: https://doi.org/10.13189/nn.2013.010204.

    Article  Google Scholar 

  15. MOTEVALIZADEH L, SHOHANY B G, ABRISHAMI M E. Effects of Mn doping on electrical properties of ZnO thin films [J]. Modern Physics Letters B, 2016, 30(4): 1650024. DOI: https://doi.org/10.1142/s021798491650024x.

    Article  Google Scholar 

  16. MARIA K H, SULTANA P, ASFIA M B. Chemical bath deposition of aluminum doped zinc sulfide thin films using non-toxic complexing agent: Effect of aluminum doping on optical and electrical properties [J]. AIP Advances, 2020, 10(6): 065315. DOI: https://doi.org/10.1063/5.0011191.

    Article  Google Scholar 

  17. KUMAR T R, VEDAMALAI M. Growth of Mn2+ ions doped ZnSe thin films by chemical bath deposition and their characterization [J]. International Journal of Pure and Applied Mathematics, 2018, 119: 6839–6849.

    Google Scholar 

  18. GUMUS C, OZKENDIR O M, KAVAK H, et al. Structural and optical properties of zinc oxide thin films prepared by spray pyrolysis method [J]. Journal of Optoelectronics and Advanced Materials, 2006, 8: 299–303.

    Google Scholar 

  19. KANT R, SHARMA D, BANSAL A, et al. Structural, optical and dielectric properties of Al/Mn doped ZnO nanoparticles, a comparative study [J]. Materials Technology, 2021, 36(9): 513–520. DOI: https://doi.org/10.1080/10667857.2020.1775408.

    Article  Google Scholar 

  20. PATILA A K, DHAWANKAR S H, TAYADE N T. Optical, structural and electrical properties of CuS thin film on dielectric substrate by spray pyrolysis technique [J]. Jordan Journal of Physics, 2022, 15(1): 49–56. DOI: https://doi.org/10.47011/15.1.7.

    Article  Google Scholar 

  21. DEHIMI M, TOUAM T, CHELOUCHE A, et al. Effects of low Ag doping on physical and optical waveguide properties of highly oriented sol-gel ZnO thin films [J]. Advances in Condensed Matter Physics, 2015: 740208. DOI: https://doi.org/10.1155/2015/740208.

  22. AWALE M B, LOKHANDE S D, KATHWATE L H. Structural and optical studies of Mn-doped ZnO nanocrystalline thin films [J]. Journal of Emerging Technologies and Innovative Research (JETIR), 2019, 6: 538–544.

    Google Scholar 

  23. DHANALAKSHMI A, NATARAJAN B, RAMADAS V, et al. Structural, morphological, optical and antibacterial activity of rod-shaped zinc oxide and manganese-doped zinc oxide nanoparticles [J]. Pramana, 2016, 87(4): 57. DOI: https://doi.org/10.1007/s12043-016-1248-0.

    Article  Google Scholar 

  24. BONIFÁCIO M A R, de LUCENA LIRA H, NEIVA L S, et al. Nanoparticles of ZnO doped with Mn: Structural and morphological characteristics [J]. Materials Research, 2017, 20(4): 1044–1049. DOI: https://doi.org/10.1590/1980-5373-mr-2015-0765.

    Article  Google Scholar 

  25. HUSSEIN H F. Preparation of poly(aniline-co-p-nitro aniline) by spin-coating and study of the effect of thickness on energy gap [J]. Walailak Journal of Science and Technology, 2014, 11: 413–419.

    Google Scholar 

  26. BOLARINWA H S, ONUU M U, FASASI A Y, et al. Determination of optical parameters of zinc oxide nanofibre deposited by electrospinning technique [J]. Journal of Taibah University for Science, 2017, 11(6): 1245–1258. DOI: https://doi.org/10.1016/j.jtusci.2017.01.004.

    Article  Google Scholar 

  27. RAJEH S, BARHOUMI A, MHAMDI A, et al. Structural, morphological, optical and opto-thermal properties of Ni-doped ZnO thin films using spray pyrolysis chemical technique [J]. Bulletin of Materials Science, 2016, 39(1): 177–186. DOI: https://doi.org/10.1007/s12034-015-1132-4.

    Article  Google Scholar 

  28. EL RADAF I M. Synthesis and characterizations of p-type kesterite Ag2ZnSnS4 thin films deposited by spray pyrolysis [J]. Journal of Electronic Materials, 2020, 49(6): 3591–3598. DOI: https://doi.org/10.1007/s11664-020-08063-4.

    Article  Google Scholar 

  29. SINGH J, VERMA V, KUMAR R, et al. Structural, optical and electrical characterization of epitaxial Cr2O3 thin film deposited by PLD [J]. Materials Research Express, 2019, 6(10): 106406. DOI: https://doi.org/10.1088/2053-1591/ab3543.

    Article  Google Scholar 

  30. AL-ZAHRANI H Y S. Synthesis, optical and optoelectrical analysis of the Cu2CoSnS4 thin films as absorber layer for thin-film solar cells [J]. Journal of Materials Science: Materials in Electronics, 2020, 31(9): 6900–6909. DOI: https://doi.org/10.1007/s10854-020-03252-7.

    Google Scholar 

  31. SELIM M S, GOUDA M E, EL-SHAARAWY M G, et al. Effect of thickness on optical properties of thermally evaporated SnS films [J]. Thin Solid Films, 2013, 527: 164–169. DOI: https://doi.org/10.1016/j.tsf.2012.10.019.

    Article  Google Scholar 

  32. ROZRA J, SAINI I, AGGARWAL S, et al. Spectroscopic analysis of Ag nanoparticles embedded in glass [J]. Advanced Materials Letters, 2013, 4(8): 598–604. DOI: https://doi.org/10.5185/amlett.2013.1402.

    Article  Google Scholar 

  33. RAMANATHAN G, MURALI K R. Rmurali dip coated indium oxide films and their optical constants [J]. Transactions on Electrical and Electronic Materials, 2020, 21(5): 513–518. DOI: https://doi.org/10.1007/s42341-020-00202-2.

    Article  Google Scholar 

  34. MAHESHWARI B U, KUMAR V S. Phase transformation of solution-based p-type Cu2ZnSnS4 thin film: Applicable for solar cell [J]. International Journal of Energy Research, 2015, 39(6): 771–777. DOI: https://doi.org/10.1002/er.3281.

    Article  Google Scholar 

  35. HUMAYAN KABIR M, AL AMIN M, RAHMAN M S, et al. Influence of Al doping on microstructure, morphology, optical and photoluminescence properties of pyrolytic ZnO thin films prepared in an ambient atmosphere [J]. Chinese Journal of Physics, 2018, 56(5): 2275–2284. DOI: https://doi.org/10.1016/j.cjph.2018.07.004.

    Article  Google Scholar 

  36. SALWA A, ABD M S, El-Sadek, et al. Thermally deposition of InSb thin films with high infrared nonlinear impact: Optical approach [J]. International Journal of Scientific & Technology Research, 2020, 9: 5800–5805.

    Google Scholar 

  37. FARRAG A A G, BALBOUL M R. Nano ZnO thin films synthesis by sol-gel spin coating method as a transparent layer for solar cell applications [J]. Journal of Sol-Gel Science and Technology, 2017, 82(1): 269–279. DOI: https://doi.org/10.1007/s10971-016-4277-8.

    Article  Google Scholar 

  38. SINGH V, KUMAR T. Study of modified PEDOT: PSS for tuning the optical properties of its conductive thin films [J]. Journal of Science: Advanced Materials and Devices, 2019, 4(4): 538–543. DOI: https://doi.org/10.1016/j.jsamd.2019.08.009.

    Google Scholar 

  39. ALSAAD A, AL DAIRY A R, AHMAD A, et al. Synthesis and characterization of polymeric (PMMA-PVA) hybrid thin films doped with TiO2 nanoparticles using dip-coating technique [J]. Crystals, 2021, 11(2): 99. DOI: https://doi.org/10.3390/cryst11020099.

    Article  Google Scholar 

  40. ELSAEEDY H I, QASEM A, MAHMOUD M, et al. The precise role of UV exposure time in controlling the orbital transition energies, optical and electrical parameters of thermally vacuum evaporated Se50Te50 thin film [J]. Optical Materials, 2021, 115: 111053. DOI: https://doi.org/10.1016/j.optmat.2021.111053.

    Article  Google Scholar 

  41. YANG Bing-chu, LIU Xiao-yan, GAO Fei, et al. Photoluminescence properties of ZnO thin films prepared by DC magnetron sputtering [J]. Journal of Central South University of Technology, 2008, 15(4): 449–453. DOI: https://doi.org/10.1007/s11771-008-0084-x.

    Article  Google Scholar 

  42. BHASKAR R, LAKSHMANAN A R, SUNDARRAJAN M, et al. Mechanism of green luminescence in ZnO [J]. Indian Journal of Pure & Applied Physics, 2009, 47: 772–774.

    Google Scholar 

  43. KUMAR JANGIR L, KUMARI Y, KUMAR A, et al. Investigation of luminescence and structural properties of ZnO nanoparticles, synthesized with different precursors [J]. Materials Chemistry Frontiers, 2017, 1(7): 1413–1421. DOI: https://doi.org/10.1039/C7QM00058H.

    Article  Google Scholar 

  44. LANG Ji-hui, HAN Qiang, YANG Jing-hai, et al. Fabrication and optical properties of Ce-doped ZnO nanorods [J]. Journal of Applied Physics, 2010, 107(7): 074302. DOI: https://doi.org/10.1063/1.3318613.

    Article  Google Scholar 

  45. SALEM J K, HAMMAD T M, HARRISON R R. Synthesis, structural and optical properties of Ni-doped ZnO micro-spheres [J]. Journal of Materials Science: Materials in Electronics, 2013, 24(5): 1670–1676. DOI: https://doi.org/10.1007/s10854-012-0994-0.

    Google Scholar 

  46. PANDA J, SASMAL I, NATH T K. Magnetic and optical properties of Mn-doped ZnO vertically aligned nanorods synthesized by hydrothermal technique [J]. AIP Advances, 2016, 6(3): 035118. DOI: https://doi.org/10.1063/1.4944837.

    Article  Google Scholar 

  47. AHN C H, KIM Y Y, KIM D C, et al. A comparative analysis of deep level emission in ZnO layers deposited by various methods [J]. Journal of Applied Physics, 2009, 105(1): 013502. DOI: https://doi.org/10.1063/1.3054175.

    Article  Google Scholar 

  48. SENOL S D, OZUGURLU E, ARDA L. Synthesis, structure and optical properties of (Mn/Cu) co-doped ZnO nanoparticles [J]. Journal of Alloys and Compounds, 2020, 822: 153514. DOI: https://doi.org/10.1016/j.jallcom.2019.153514.

    Article  Google Scholar 

  49. THANDAVAN T M K, WONG C S, GANI S M A, et al. Photoluminescence properties of un-doped and Mn-doped ZnO nanostructures [J]. Materials Express, 2014, 4(6): 475–482. DOI: https://doi.org/10.1166/mex.2014.1193.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emine Güneri or Johnson Henry.

Additional information

Contributors

The research goals were developed by Emine GÜNERI. Emine GÜNERI is the project administrator and drafted the methodology for this analysis. Johnson HENRY wrote and edited the manuscript. Fatma GÖDE did the investigation and Nilgün Kalaycioğlu ÖZPOZAN did the analysis in the manuscript. All authors replied to reviewer’s comments and revised the final version.

Conflict of interest

Emine GÜNERI, Johnson HENRY, Fatma GÖDE and Nilgün Kalaycioğlu ÖZPOZAN declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Güneri, E., Henry, J., Göde, F. et al. Structural and optical properties of chemically deposited Mn-doped ZnO thin films. J. Cent. South Univ. 30, 691–706 (2023). https://doi.org/10.1007/s11771-023-5281-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5281-0

Key words

关键词

Navigation