Skip to main content
Log in

Creep behavior of water-containing bedded shale

含水层状页岩的蠕变行为

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this paper, the creep property of shales is examined from two viewpoints: one is bedding orientation and the other is the water content. To investigate these effects, uniaxial creep tests were carried out on water-containing bedded shales. The creep curves were continuously observed with different water contents and bedding orientations. The correlations of water content and bedding angle with the transient elastic modulus and transient creep rate were constructed. The effects of bedding angle and water content were incorporated into the creep parameters of Burgers creep model, and the microscopic mechanism of water effect was interpreted based on mineral compositions due to rock-water interaction. The results revealed that the shale with a higher bedding angle had a higher transient elastic modulus and a lower transient creep rate. A higher water content triggered a lower transient elastic modulus and a higher transient creep rate.

摘要

本文对含水层状页岩进行了单轴蠕变试验, 研究了含水率和层理倾角对其蠕变性质的影响, 构 建了含水率和层理倾角与瞬时弹性模量和瞬时蠕变速率的关系。将含水率和层理倾角的影响引入 Burgers 蠕变模型的蠕变参数中, 构建了能够反映页岩层理和含水率的蠕变模型。基于矿物成分分析解 释了水岩相互作用导致的蠕变性质变化的微观机制。结果表明, 层理倾角较高的页岩具有较高的瞬时 弹性模量和较低的瞬时蠕变速率;含水率越高, 瞬时弹性模量越低, 瞬时蠕变率越高。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. LIU Yao-ru, HE Zhu, YANG Qiang, et al. Long-term stability analysis for high arch dam based on time-dependent deformation reinforcement theory [J]. International Journal of Geomechanics, 2017, 17(4): 1–12. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0000760.

    Article  Google Scholar 

  2. CORNET J S, DABROWSKI M, SCHMID D W. Long term creep closure of salt cavities [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 103: 96–106. DOI: https://doi.org/10.1016/j.ijrmms.2018.01.025.

    Article  Google Scholar 

  3. YANG Sheng-qi, XU Peng, RANJITH P G. Damage model of coal under creep and triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2015, 80: 337–345. DOI: https://doi.org/10.1016/j.ijrmms.2015.10.006.

    Article  Google Scholar 

  4. XU Guo-wen, HE Chuan, YANG Qin-hao, et al. Progressive failure process of secondary lining of a tunnel under creep effect of surrounding rock [J]. Tunnelling and Underground Space Technology, 2019, 90: 76–98. DOI: https://doi.org/10.1016/j.tust.2019.04.024.

    Article  Google Scholar 

  5. ZHAO Hong-ze, TIAN Yu, GUO Qing-yong, et al. The slope creep law for a soft rock in an open-pit mine in the Gobi region of Xinjiang, China [J]. International Journal of Coal Science & Technology, 2020, 7(2): 371–379. DOI: https://doi.org/10.1007/s40789-020-00305-4.

    Article  Google Scholar 

  6. DENG H F, ZHOU M L, LI J L, et al. Creep degradation mechanism by water-rock interaction in the red-layer soft rock [J]. Arabian Journal of Geosciences, 2016, 9(12): 601. DOI: https://doi.org/10.1007/s12517-016-2604-6.

    Article  Google Scholar 

  7. WU L Z, LI B, HUANG R Q, et al. Experimental study and modeling of shear rheology in sandstone with non-persistent joints [J]. Engineering Geology, 2017, 222: 201–211. DOI: https://doi.org/10.1016/j.enggeo.2017.04.003.

    Article  Google Scholar 

  8. ZHAO Jun, FENG Xia-ting, ZHANG Xi-wei, et al. Brittle and ductile creep behavior of Jinping marble under true triaxial stress [J]. Engineering Geology, 2019, 258: 105157. DOI: https://doi.org/10.1016/j.enggeo.2019.105157.

    Article  Google Scholar 

  9. CONG Lu, HU Xin-li. Triaxial rheological property of sandstone under low confining pressure [J]. Engineering Geology, 2017, 231: 45–55. DOI: https://doi.org/10.1016/j.enggeo.2017.10.005.

    Article  Google Scholar 

  10. CHEN Chong-feng, XU Tao, HEAP M J, et al. Influence of unloading and loading stress cycles on the creep behavior of Darley Dale Sandstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 55–63. DOI: https://doi.org/10.1016/j.ijrmms.2018.09.002.

    Article  Google Scholar 

  11. TRZECIAK M, SONE H, DABROWSKI M. Long-term creep tests and viscoelastic constitutive modeling of lower Paleozoic shales from the Baltic Basin, N Poland [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 112: 139–157. DOI: https://doi.org/10.1016/j.ijrmms.2018.10.013.

    Article  Google Scholar 

  12. HAMZA O, STACE R. Creep properties of intact and fractured muddy siltstone [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 109–116. DOI: https://doi.org/10.1016/j.ijrmms.2018.03.006.

    Article  Google Scholar 

  13. CHEN Yu-long, ZHANG Yu-ning, LI Xue-long. Experimental study on influence of bedding angle on gas permeability in coal [J]. Journal of Petroleum Science and Engineering, 2019, 179: 173–179. DOI: https://doi.org/10.1016/j.petrol.2019.04.010.

    Article  Google Scholar 

  14. CUI Zhen-dong, QI Sheng-wen, HAN Wei-ge. The role of weak bedding planes in the cross-layer crack growth paths of layered rocks [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2022, 8(1): 22. DOI: https://doi.org/10.1007/s40948-021-00321-x.

    Article  Google Scholar 

  15. LI Ying-jie, SONG Li-hong, TANG Yuan-jun, et al. Evaluating the mechanical properties of anisotropic shale containing bedding and natural fractures with discrete element modeling [J]. International Journal of Coal Science & Technology, 2022, 9(1): 18. DOI: https://doi.org/10.1007/s40789-022-00473-5.

    Article  Google Scholar 

  16. CHEN Yu-long, UCHIMURA T, IRFAN M, et al. Detection of water infiltration and deformation of unsaturated soils by elastic wave velocity [J]. Landslides, 2017, 14(5): 1715–1730. DOI: https://doi.org/10.1007/s10346-017-0825-8.

    Article  Google Scholar 

  17. CHEN Yu-long, IRFAN M, UCHIMURA T, et al. Elastic wave velocity monitoring as an emerging technique for rainfall-induced landslide prediction [J]. Landslides, 2018, 15(6): 1155–1172. DOI: https://doi.org/10.1007/s10346-017-0943-3.

    Article  Google Scholar 

  18. CHEN Yu-long, IRFAN M, UCHIMURA T, et al. Feasibility of using elastic wave velocity monitoring for early warning of rainfall-induced slope failure [J]. Sensors (Basel, Switzerland), 2018, 18(4): 997. DOI: https://doi.org/10.3390/s18040997.

    Article  Google Scholar 

  19. CHEN Yu-long, IRFAN M, UCHIMURA T, et al. Development of elastic wave velocity threshold for rainfall-induced landslide prediction and early warning [J]. Landslides, 2019, 16(5): 955–968. DOI: https://doi.org/10.1007/s10346-019-01138-2.

    Article  Google Scholar 

  20. CHEN Yu-long, WITHANAGE K R, UCHIMURA T, et al. Shear deformation and failure of unsaturated sandy soils in surface layers of slopes during rainwater infiltration [J]. Measurement, 2020, 149: 107001. DOI: https://doi.org/10.1016/j.measurement.2019.107001.

    Article  Google Scholar 

  21. PELLET F L, KESHAVARZ M, BOULON M. Influence of humidity conditions on shear strength of clay rock discontinuities [J]. Engineering Geology, 2013, 157: 33–38. DOI: https://doi.org/10.1016/j.enggeo.2013.02.002.

    Article  Google Scholar 

  22. WASANTHA P L P, RANJITH P G. Water-weakening behavior of Hawkesbury sandstone in brittle regime [J]. Engineering Geology, 2014, 178: 91–101. DOI: https://doi.org/10.1016/j.enggeo.2014.05.015.

    Article  Google Scholar 

  23. ZHAO Zhi-hong, YANG Jun, ZHANG Da-feng, et al. Effects of wetting and cyclic wetting-drying on tensile strength of sandstone with a low clay mineral content [J]. Rock Mechanics and Rock Engineering, 2017, 50(2): 485–491. DOI: https://doi.org/10.1007/s00603-016-1087-9.

    Article  Google Scholar 

  24. ZHAO Zhi-hong, YANG Jun, ZHOU Dong, et al. Experimental investigation on the wetting-induced weakening of sandstone joints [J]. Engineering Geology, 2017, 225: 61–67. DOI: https://doi.org/10.1016/j.enggeo.2017.04.008.

    Article  Google Scholar 

  25. LI Yi-ping, LIU Wei, YANG Chun-he, et al. Experimental investigation of mechanical behavior of bedded rock salt containing inclined interlayer [J]. International Journal of Rock Mechanics and Mining Sciences, 2014, 69: 39–49. DOI: https://doi.org/10.1016/j.ijrmms.2014.03.06.

    Article  Google Scholar 

  26. ZHAO Zhi-hong, GUO Tie-cheng, NING Ze-yu, et al. Numerical modeling of stability of fractured reservoir bank slopes subjected to water-rock interactions [J]. Rock Mechanics and Rock Engineering, 2018, 51(8): 2517–2531. DOI: https://doi.org/10.1007/s00603-017-1360-6.

    Article  Google Scholar 

  27. LI Xiao-ning, ZHU Bao-long, WU Xi-yong. Swelling characteristics of soils derived from black shales heightened by cations in Northern Chongqing, China [J]. Journal of Mountain Science, 2016, 13(6): 1107–1119. DOI: https://doi.org/10.1007/s11629-015-3576-9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-jie Wen  (文志杰).

Additional information

Contributors

CHEN Yu-long developed the overall experimental method and edited the manuscript. HAO Xian-jie contributed to the conception of the study and analyzed the data. TENG Jun-yang verified the proposed method through practical experiments and reviewed and edited the manuscript. WEN Zhi-Jie managed and analyzed the data.

Foundation item

Project(52009131) supported by the National Natural Science Foundation of China; Project(GJNY-20-113-05) supported by the Open Funds of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, China; Project (2020RGET03) supported by the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory-East China University of Technology, China

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Yl., Hao, Xj., Teng, Jy. et al. Creep behavior of water-containing bedded shale. J. Cent. South Univ. 30, 975–991 (2023). https://doi.org/10.1007/s11771-023-5279-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5279-7

Key words

关键词

Navigation