Skip to main content
Log in

Thermoacidophilic bioleaching of copper sulfide concentrate in the presence of chloride ions

氯离子存在条件下嗜热酸性生物浸出硫化铜精矿

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The role of chloride ion in the performance of extreme thermophiles bacterium Sulfolobus acidocalarius in bioleaching process of copper sulfide concentrate at Midouk Shahr-e-Babak Complex was investigated. The gradual adaptation of bacteria to chloride ions at pH=1.5 showed that the presence of chloride ions in solution reduced the reproduction and growth rate of bacteria but did not prevent their growth. Results indicated that the effect of decreasing pH from 2.0 to 1.5 on bioleaching of copper sulfide concentrate is to increase the recovery of copper in the first few days, and nearly 100% of copper was extracted after 9 d. As the solid content in solution increases from 1% to 3%, about more 6 d was required to extract copper. Bioleaching of copper sulfide concentrate revealed that the dissolution of copper sulfide concentrates at constant pH=1.5, 1% solid content, and concentration of 0.5 mol/L and 1.0 mol/L NaCl after 9 d, was 98% and 80%, respectively; and after 21 d, it reached nearly 100% and 90%, respectively. Under the same conditions without microorganisms, copper extraction reached 62%. The kinetics of bioleaching and leaching is a combination of diffusion and chemical reaction.

摘要

本文研究了在生物浸出Midouk Shahrr-e-Babak 铜矿复合体系中, 氯离子对用极端嗜热菌Sulfolobus acidocalarius 生物浸出硫化铜精矿的影响。细菌在pH=1.5 时逐渐适应氯离子, 说明溶液中氯离子的存在只是降低了细菌的繁殖和生长速度, 但并没有阻止细菌的生长。当pH 从2.0 降低到1.5 时, 在前几天铜的浸出率逐步提高, 9 d 后铜的浸出率接近100%。随着溶液中固体含量从1% 增加到3%, 铜浸出时间延长了6 d。在pH=1.5、固体含量为1%、NaCl 浓度为0.5 mol/L 和1.0 mol/L 的条件下, 9 d后的浸出率分别为98% 和80%; 21 d 后, 浸出率分别达到近100% 和90%。在无微生物但其他条件相同的情况下, 铜的浸出率仅为62%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. DUTRIZAC J E. The kinetics of dissolution of chalcopyrite in ferric ion media [J]. Metallurgical Transactions B, 1978, 9(3): 431–439. DOI: https://doi.org/10.1007/BF02654418.

    Article  Google Scholar 

  2. JONGLERTJUNYA W. Bioleaching of chalcopyrite [D]. United Kingdom: University of Birmingham, 2003.

    Google Scholar 

  3. VENKATACHALAM S. Treatment of chalcopyrite concentrates by hydrometallurgical techniques [J]. Minerals Engineering, 1991, 4(7–11): 1115–1126. DOI: https://doi.org/10.1016/0892-6875(91)90087-C.

    Article  Google Scholar 

  4. MARTÍNEZ-BELLANGE P, von BERNATH D, NAVARRO C A, et al. Biomining of metals: New challenges for the next 15 years [J]. Microbial Biotechnology, 2022, 15(1): 186–188. DOI: https://doi.org/10.1111/1751-7915.13985.

    Article  Google Scholar 

  5. PEACEY J, GUO Xian-jian, ROBLES E. Copper hydrometallurgy: Current status, preliminary economics, future direction and positioning versus smelting [J]. Transactions of Nonferrous Metals Society of China, 2004, 14(3): 560–568.

    Google Scholar 

  6. CARNEIRO M F C, LEÃO V A. The role of sodium chloride on surface properties of chalcopyrite leached with ferric sulphate [J]. Hydrometallurgy, 2007, 87(3–4): 73–82. DOI: https://doi.org/10.1016/j.hydromet.2007.01.005.

    Article  Google Scholar 

  7. VELOSO T C, PEIXOTO J J M, PEREIRA M S, et al. Kinetics of chalcopyrite leaching in either ferric sulphate or cupric sulphate media in the presence of NaCl [J]. International Journal of Mineral Processing, 2016, 148: 147–154. DOI: https://doi.org/10.1016/j.minpro.2016.01.014.

    Article  Google Scholar 

  8. ABHILASH, MEHTA K D, PANDEY B D. Bacterial leaching kinetics for copper dissolution from a lowgrade Indian chalcopyrite ore [J]. Rem: Revista Escola De Minas, 2013, 66(2): 245–250. DOI:https://doi.org/10.1590/s0370-44672013000200017.

    Google Scholar 

  9. ABDOLLAHI H, SHAFAEI S Z, NOAPARAST M, et al. Mesophilic and thermophilic bioleaching of copper from a chalcopyrite-containing molybdenite concentrate [J]. International Journal of Mineral Processing, 2014, 128: 25–32. DOI: https://doi.org/10.1016/j.minpro.2014.02.003.

    Article  Google Scholar 

  10. VELÁSQUEZ-YÉVENES L, TORRES D, TORO N. Leaching of chalcopyrite ore agglomerated with high chloride concentration and high curing periods [J]. Hydrometallurgy, 2018, 181: 215–220. DOI: https://doi.org/10.1016/j.hydromet.2018.10.004.

    Article  Google Scholar 

  11. LIANG Chang-li, XIA Jin-lan, NIE Zhen-yuan, et al. Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis [J]. Bioresource Technology, 2012, 110: 462–467. DOI: https://doi.org/10.1016/j.biortech.2012.01.084.

    Article  Google Scholar 

  12. CHEN Wei, YIN Sheng-hua, WU Ai-xiang, et al. Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater [J]. Bioresource Technology, 2020, 297: 122453. DOI: https://doi.org/10.1016/j.biortech.2019.122453.

    Article  Google Scholar 

  13. SADEGHIEH S M, AHMADI A, HOSSEINI M R. Effect of water salinity on the bioleaching of copper, nickel and cobalt from the sulphidic tailing of Golgohar Iron Mine, Iran [J]. Hydrometallurgy, 2020, 198: 105503. DOI: https://doi.org/10.1016/j.hydromet.2020.105503.

    Article  Google Scholar 

  14. ISMAEL M R C, CARVALHO J M R. Iron recovery from sulphate leach liquors in zinc hydrometallurgy [J]. Minerals Engineering, 2003, 16(1): 31–39. DOI: https://doi.org/10.1016/S0892-6875(02)00310-2.

    Article  Google Scholar 

  15. BOSECKER K. Bioleaching: Metal solubilization by microorganisms [J]. FEMS Microbiology Reviews, 1997, 20(3–4): 591–604. DOI: https://doi.org/10.1016/S0168-6445(97)00036-3.

    Article  Google Scholar 

  16. WANG Yu-guang, LI Kai, CHEN Xin-hua, et al. Responses of microbial community to pH stress in bioleaching of low grade copper sulfide [J]. Bioresource Technology, 2018, 249: 146–153. DOI: https://doi.org/10.1016/j.biortech.2017.10.016.

    Article  Google Scholar 

  17. MARTINS F L, LEÃO V A. Chalcopyrite bioleaching in chloride media: A mini-review [J]. Hydrometallurgy, 2023, 216: 105995. DOI: https://doi.org/10.1016/j.hydromet.2022.105995.

    Article  Google Scholar 

  18. VILCÁEZ J, SUTO K, INOUE C. Bioleaching of chalcopyrite with thermophiles: Temperature-pH-ORP dependence [J]. International Journal of Mineral Processing, 2008, 88(1–2): 37–44. DOI: https://doi.org/10.1016/j.minpro.2008.06.002.

    Article  Google Scholar 

  19. YÉVENES L V, MIKI H, NICOL M. The dissolution of chalcopyrite in chloride solutions [J]. Hydrometallurgy, 2010, 103(1–4): 80–85. DOI:https://doi.org/10.1016/j.hydromet.2010.03.004.

    Article  Google Scholar 

  20. YOO K, KIM S K, LEE J C, et al. Effect of chloride ions on leaching rate of chalcopyrite [J]. Minerals Engineering, 2010, 23(6): 471–477. DOI: https://doi.org/10.1016/j.mineng.2009.11.007.

    Article  Google Scholar 

  21. BEVILAQUA D, LAHTI H, SUEGAMA P H, et al. Effect of Na-chloride on the bioleaching of a chalcopyrite concentrate in shake flasks and stirred tank bioreactors [J]. Hydrometallurgy, 2013, 138: 1–13. DOI:https://doi.org/10.1016/j.hydromet.2013.06.008.

    Article  Google Scholar 

  22. MARTINS F L, PATTO G B, LEÃO V A. Chalcopyrite bioleaching in the presence of high chloride concentrations [J]. Journal of Chemical Technology & Biotechnology, 2019: jctb.6028. DOI:https://doi.org/10.1002/jctb.6028.

  23. LIU meilin, RUAN renman, WEN jiankang, et al. Investigation of viscosity and thermodynamic properties on the bioleaching solution with and without mesophilic bacteria [J]. Advanced Materials Research, 2007, 20–21: 149–151. DOI: https://doi.org/10.4028/www.scientific.net/amr.20-21.149.

    Article  Google Scholar 

  24. MILLER G, NEWTON T. Copper heap leach testing, interpretation and scale up [EB/OL]. [2022-07-05]. http://dokumen.tips/documents/copper-heap-leaching-testing-interpretation-and-scale-up.html?page=1.

Download references

Acknowledgment

The authors thank Dr. Alexander-Eskandar V. MIRZAMOGHADAM, who is also affiliated with Shahid Bahonar University of Kerman as professor in College of Engineering for reviewing, editing, and offering excellent suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeel Darezereshki.

Additional information

Conflict of interest

The authors declare that they have no known conflict of interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshoude, M., Darezereshki, E. & Bakhtiari, F. Thermoacidophilic bioleaching of copper sulfide concentrate in the presence of chloride ions. J. Cent. South Univ. 30, 749–762 (2023). https://doi.org/10.1007/s11771-023-5276-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5276-x

Key words

关键词

Navigation