Skip to main content
Log in

Experimental investigation of corrosion-induced degradation of rockbolt considering natural fracture and continuous load

裂隙与持续荷载影响下砂浆锚杆腐蚀退化的试验研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Corrosion of rockbolt significantly affects the long-term serviceability of anchorage structures, resulting in premature failure of rock engineering. The corrosion and degradation mechanism for mortar grouted rockbolt is far from clear. In this paper, comprehensive experiments were carried out to investigate corrosion-induced degradation of rockbolt considering natural fracture and continuous load. Concrete-mortar-rockbolt specimens with an initial crack at different locations were made. Continuous axial loads were applied to the rockbolt by a puller system. The electrochemical method was employed to accelerate rockbolt corrosion. The bond — slip relationships for corroded specimens were obtained by the direct pull-out test of rockbolt. Further, the effects of natural fracture and continuous load on the corrosion characteristics, corrosion mechanism and bond performance degradation of rockbolt were discussed. Results show that corrosion of rockbolt significantly reduces the bond strength and critical slip displacement of rockbolt. The bond strength for the rockbolt with a corrosion degree of 3.45%–4.98% reduces by 39.5%–65.8% compared with that before corrosion. Corrosion of rockbolt is more prone to occur near the natural fracture. The closer the natural fracture to the loading end, the more severe the corrosion-induced bond degradation. The larger the axial load, the more significant the corrosion degradation.

摘要

锚杆是岩土工程中应用最广泛的锚固结构之一。锚杆腐蚀严重影响锚固结构的长期使用性能, 导致锚固工程过早失效破坏。砂浆锚杆的腐蚀退化机理尚不完全清楚, 特别是考虑到岩体的天然裂隙和锚杆所受到的持续荷载作用。本文考虑天然裂隙和持续荷载, 开展了锚杆腐蚀退化综合试验研究。对不同位置裂隙的混凝土-砂浆-锚杆试件进行了腐蚀试验。采用可施加持续应力装置对锚杆施加连续的轴向载荷, 并采用电化学方法加速锚杆腐蚀。通过对不同腐蚀时间的锚杆进行拔出试验, 得到了腐蚀试件的黏结滑移关系。进一步讨论了天然裂隙和连续荷载对锚杆腐蚀特性、腐蚀机理和黏结性能退化的影响。结果表明, 锚杆腐蚀显著降低了砂浆锚杆的黏结强度和临界滑移长度。腐蚀程度为3.45%∼4.98%的锚杆黏结强度较腐蚀前下降39.5%∼65.8%。锚杆在天然裂隙附近更容易发生局部腐蚀。天然断裂越靠近加载端, 腐蚀引起的黏结强度退化越严重。轴向载荷越大, 腐蚀退化越明显。本研究解释了砂浆锚杆在裂隙岩体中的腐蚀退化机制, 为锚杆支护耐久性设计提供了参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MA Shu-qi, NEMCIK J, AZIZ N. An analytical model of fully grouted rock bolts subjected to tensile load [J]. Construction and Building Materials, 2013, 49: 519–526. DOI: https://doi.org/10.1016/j.conbuildmat.2013.08.084.

    Article  Google Scholar 

  2. KANG Hong-pu, LI Jian-zhong, YANG Jing-he, et al. Investigation on the influence of abutment pressure on the stability of rock bolt reinforced roof strata through physical and numerical modeling [J]. Rock Mechanics and Rock Engineering, 2017, 50(2): 387–401. DOI: https://doi.org/10.1007/s00603-016-1114-x.

    Article  Google Scholar 

  3. CHEN Jian-hang, HAGAN P C, SAYDAM S. Sample diameter effect on bonding capacity of fully grouted cable bolts [J]. Tunnelling and Underground Space Technology, 2017, 68: 238–243. DOI: https://doi.org/10.1016/j.tust.2017.06.004.

    Article  Google Scholar 

  4. WU Sai-sai, CHEN Hong-hao, CRAIG P, et al. An experimental framework for simulating stress corrosion cracking in cable bolts [J]. Tunnelling and Underground Space Technology, 2018, 76: 121–132. DOI: https://doi.org/10.1016/j.tust.2018.03.004.

    Article  Google Scholar 

  5. CHEN Jian-hang, SAYDAM S, HAGAN P C. An analytical model of the load transfer behavior of fully grouted cable bolts [J]. Construction and Building Materials, 2015, 101: 1006–1015. DOI: https://doi.org/10.1016/j.conbuildmat.2015.10.099.

    Article  Google Scholar 

  6. SHANG J, YOKOTA Y, ZHAO Z, et al. DEM simulation of mortar-bolt interface behaviour subjected to shearing [J]. Construction and Building Materials, 2018, 185: 120–137. DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.044.

    Article  Google Scholar 

  7. CHEN Jian-hang, HAGAN P C, SAYDAM S. Load transfer behavior of fully grouted cable bolts reinforced in weak rocks under tensile loading conditions [J]. Geotechnical Testing Journal, 2016, 39(2): 20150096. DOI: https://doi.org/10.1520/gtj20150096.

    Article  Google Scholar 

  8. YOKOTA Y, ZHAO Zhi-ye, NIE Wen, et al. Experimental and numerical study on the interface behaviour between the rock bolt and bond material [J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 869–879. DOI: https://doi.org/10.1007/s00603-018-1629-4.

    Article  Google Scholar 

  9. BAHRANI N, HADJIGEORGIOU J. Explicit reinforcement models for fully-grouted rebar rock bolts [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(2): 267–280. DOI: https://doi.org/10.1016/j.jrmge.2016.07.006.

    Article  Google Scholar 

  10. WU Sai-sai, CHEN Hong-hao, LAMEI RAMANDI H, et al. Effects of environmental factors on stress corrosion cracking of cold-drawn high-carbon steel wires [J]. Corrosion Science, 2018, 132: 234–243. DOI: https://doi.org/10.1016/j.corsci.2017.12.014.

    Article  Google Scholar 

  11. WU Sai-sai, NORTHOVER M, CRAIG P, et al. Environmental influence on mesh corrosion in underground coal mines [J]. International Journal of Mining, Reclamation and Environment, 2018, 32: 519–535. DOI: https://doi.org/10.1080/17480930.2017.1299604.

    Article  Google Scholar 

  12. GAO Yong-tao, WU Tian-hua, ZHOU Yu. Application and prospective of 3D printing in rock mechanics: A review [J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(1): 1–17. DOI: https://doi.org/10.1007/s12613-020-2119-8.

    Article  Google Scholar 

  13. ZHANG Kai, LI Hui-fang, HAN Jia-ming, et al. Understanding of mineral change mechanisms in coal mine groundwater reservoir and their influences on effluent water quality: A experimental study [J]. International Journal of Coal Science & Technology, 2021, 8(1): 154–167. DOI: https://doi.org/10.1007/s40789-020-00368-3.

    Article  Google Scholar 

  14. YU Hao, GUI He-rong, ZHAO Hong-hai, et al. Hydrochemical characteristics and water quality evaluation of shallow groundwater in Suxian mining area, Huaibei coalfield, China [J]. International Journal of Coal Science & Technology, 2020, 7(4): 825–835. DOI: https://doi.org/10.1007/s40789-020-00365-6.

    Article  Google Scholar 

  15. GUO Qi-feng, PAN Ji-liang, WANG Min, et al. Corrosive environment assessment and corrosion-induced rockbolt failure analysis in a costal underground mine [J]. International Journal of Corrosion, 2019, 2019: 1–9. DOI: https://doi.org/10.1155/2019/2105842.

    Article  Google Scholar 

  16. WANG Li, DONG Chao-fang, MAN Cheng, et al. Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review [J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(5): 754–773. DOI: https://doi.org/10.1007/s12613-020-2242-6.

    Article  Google Scholar 

  17. WANG Pan-jun, MA Ling-wei, CHENG Xue-qun, et al. Influence of grain refinement on the corrosion behavior of metallic materials: A review [J]. International Journal of Minerals, Metallurgy and Materials, 2021, 28(7): 1112–1126. DOI: https://doi.org/10.1007/s12613-021-2308-0.

    Article  Google Scholar 

  18. LI C, STILLBORG B. Analytical models for rock bolts [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(8): 1013–1029. DOI: https://doi.org/10.1016/s1365-1609(99)00064-7.

    Article  Google Scholar 

  19. REN F F, YANG Z J, CHEN J F, et al. An analytical analysis of the full-range behaviour of grouted rockbolts based on a tri-linear bond — slip model [J]. Construction and Building Materials, 2010, 24(3): 361–370. DOI: https://doi.org/10.1016/j.conbuildmat.2009.08.021.

    Article  Google Scholar 

  20. MARTÍN L B, TIJANI M, HADJ-HASSEN F, et al. Assessment of the bolt-grout interface behaviour of fully grouted rockbolts from laboratory experiments under axial loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 63: 50–61. DOI: https://doi.org/10.1016/j.ijrmms.2013.06.007.

    Article  Google Scholar 

  21. KANG H, WU Y, GAO F, et al. Mechanical performances and stress states of rock bolts under varying loading conditions [J]. Tunnelling and Underground Space Technology, 2016, 52: 138–146. DOI: https://doi.org/10.1016/j.tust.2015.12.005.

    Article  Google Scholar 

  22. MA Shu-qi, NEMCIK J, AZIZ N, et al. Analytical model for rock bolts reaching free end slip [J]. Construction and Building Materials, 2014, 57: 30–37. DOI: https://doi.org/10.1016/j.conbuildmat.2014.01.057.

    Article  Google Scholar 

  23. MA Shu-qi, NEMCIK J, AZIZ N, et al. Numerical modeling of fully grouted rockbolts reaching free-end slip [J]. International Journal of Geomechanics, 2016, 16(1): 04015020. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0000484.

    Article  Google Scholar 

  24. MA Shu-qi, ZHAO Zhi-ye, NIE Wen, et al. A numerical model of fully grouted bolts considering the tri-linear shear bond — slip model [J]. Tunnelling and Underground Space Technology, 2016, 54: 73–80. DOI: https://doi.org/10.1016/j.tust.2016.01.033.

    Article  Google Scholar 

  25. ZOU Jin-feng, ZHANG Peng-hao. Analytical model of fully grouted bolts in pull-out tests and in situ rock masses [J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 113: 278–294. DOI: https://doi.org/10.1016/j.ijrmms.2018.11.015.

    Article  Google Scholar 

  26. ZUO Jian-ping, WEN Jin-hao, LI Yong-dong, et al. Investigation on the interaction mechanism and failure behavior between bolt and rock-like mass [J]. Tunnelling and Underground Space Technology, 2019, 93: 103070. DOI: https://doi.org/10.1016/j.tust.2019.103070.

    Article  Google Scholar 

  27. CHEN Jian-hang, ZHAO Hong-bao, HE Fu-lian, et al. Studying the performance of fully encapsulated rock bolts with modified structural elements [J]. International Journal of Coal Science & Technology, 2021, 8(1): 64–76. DOI: https://doi.org/10.1007/s40789-020-00388-z.

    Article  Google Scholar 

  28. CROSKY A, SMITH B, HEBBLEWHITE B. Failure of rockbolts in underground mines in Australia [J]. Practical Failure Analysis, 2003, 3(2): 70–78. DOI: https://doi.org/10.1007/BF02717427.

    Article  Google Scholar 

  29. CRAIG P, SERKAN S, HAGAN P, et al. Investigations into the corrosive environments contributing to premature failure of Australian coal mine rock bolts [J]. International Journal of Mining Science and Technology, 2016, 26(1): 59–64. DOI: https://doi.org/10.1016/j.ijmst.2015.11.011.

    Article  Google Scholar 

  30. ZHAO Jian, JI Wen-zheng, ZHANG Wen-jin, et al. Sampling investigation of on situation early anchor corrosion in-situ [J]. Chinese Journal of Underground Space and Engineering, 2005(S1): 179–184. (in Chinese)

  31. LI Dian-qing, JIANG Shui-hua, ZHANG Li-min, et al. System reliability analysis of rcok slopes considering rock bolt corrosion [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(6): 1137–1144. (in Chinese)

    Google Scholar 

  32. DING Wan-tao, WANG Zhong-rong, HUANG Xing-hang, et al. Influence of corrosion on anchoring bond behavior of jointed rock mass [J]. KSCE Journal of Civil Engineering, 2022, 26(4): 1914–1928. DOI: https://doi.org/10.1007/s12205-022-0324-x.

    Article  Google Scholar 

  33. COCCIA S, IMPERATORE S, RINALDI Z. Influence of corrosion on the bond strength of steel rebars in concrete [J]. Materials and Structures, 2016, 49(1): 537–551. DOI: https://doi.org/10.1617/s11527-014-0518-x.

    Article  Google Scholar 

  34. VANDERMAAT D, SAYDAM S, HAGAN P C, et al. Back-calculation of failure stress of rockbolts affected by stress corrosion cracking in underground coal mines [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 100: 310–317. DOI: https://doi.org/10.1016/j.ijrmms.2017.10.029.

    Article  Google Scholar 

  35. YU Shuo, JIN Hao. Modeling of the corrosion-induced crack in concrete contained transverse crack subject to chloride ion penetration [J]. Construction and Building Materials, 2020, 258: 119645. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119645.

    Article  Google Scholar 

  36. QIAO Di, NAKAMURA H, YAMAMOTO Y, et al. Crack patterns of concrete with a single rebar subjected to nonuniform and localized corrosion [J]. Construction and Building Materials, 2016, 116: 366–377. DOI: https://doi.org/10.1016/j.conbuildmat.2016.04.149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Xi  (席迅).

Additional information

Contributors

GUO Qi-feng developed the overarching research goals and edited the draft of the manuscript. LIU Hai-long conducted the experiments and wrote the manuscript. XI Xun proposed the concept and designed the testing programs. MA Hong-chi analyzed experimental results. PAN Ji-liang conducted the literature review and edited the manuscript. CAI Mei-feng reviewed and edited the manuscript.

Foundation item

Project(2021YFC3001301) supported by the National Key Research and Development Program of China; Project(FRF-IDRY-20-032) supported by the Fundamental Research Funds for the Central Universities, China

Conflict of interest

GUO Qi-feng, LIU Hai-long, XI Xun, MA Hong-chi, PAN Ji-liang, CAI Mei-feng declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Qf., Liu, Hl., Xi, X. et al. Experimental investigation of corrosion-induced degradation of rockbolt considering natural fracture and continuous load. J. Cent. South Univ. 30, 947–961 (2023). https://doi.org/10.1007/s11771-023-5269-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5269-9

Key words

关键词

Navigation