Skip to main content
Log in

Influence of kinetic factors on preparation of boron carbide by magnesiothermic self-propagation synthesis

动力学因素对镁热自蔓延制备碳化硼的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The adiabatic temperature is an accepted thermodynamic criterion for the occurrence of the magnesiothermic self-propagation synthesis (SHS) reaction, but the actual experimental situation is often more complicated. In this paper, the influence of kinetic factors was investigated in the SHS process by varying the experimental conditions of Mg powder particle size and sample pressure. The results show that even if the experimental raw materials were the same, the different physical states of the raw materials could lead to completely different reaction endpoints. It was found that the reaction could not be initiated when the particle size of Mg powder was larger than 96 µm. The finer magnesium powder and higher sample pressure would accelerate the reaction and reduce by-products, but also increase the evaporation and dissipation of the raw material. The results show that the size of magnesium powder near 58 µm and the sample pressure of 30 MPa were suitable experimental conditions.

摘要

本文以镁热自蔓延过程中的反应动力学因素作为基础, 探究了不同镁粉粒径及制样压力对自蔓延过程的影响, 考察了不同镁粉粒径及制样压力对产物碳化硼的物相组成、微观形貌及晶体结构发育的影响规律。结果表明: 自蔓延过程会显著受到动力学因素的影响, 当镁粉粒径大于96 μm 时, 反应物接触面过小, 反应无法启动并维持。随着镁粉粒径的减小, 氧化硼的还原反应加快, 硼酸镁的形成被有效抑制, 浸出产物中的镁残留量从0.38% 降至0.29%; 但过快的还原反应使得体系温度迅速升高, 致使部分硼镁挥发, 浸出产物的的C/B 质量比从0.52 升至0.65; 制样压力的增大能够限制晶体生长空间, 从而削弱硼酸镁的晶须化过程, 浸出产物中的镁残留量从0.18% 降至0.08%; 当制样压力从0 增至30 MPa 时, 能够缩短原料颗粒间的间距, 在一定程度上促进还原反应的进行, 但同时也促进了硼镁的蒸发耗散, 而压力的进一步增加则能够在空间上限制硼镁的挥发, 提高原料利用率。浸出产物的C/B质量比在30 MPa 时达到峰值0.74, 并随着压力的进一步升高而下降至0.66。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. SCHWETZ K A, GRELLNER W, LIPP A. Mechanical properties of HIP treated sintered boron carbide [J]. Institute of Physics Conference Series, 1986, 5: 413–426.

    Google Scholar 

  2. WANG L S. Investigation of high strength micro-crystalline boron carbide ceramic [J]. Journal CSIMM, 1986, 4(50): 65–70.

    Google Scholar 

  3. SCHWETZ K A, SIGL L S, GREIM J, et al. Wear of boron carbide ceramics by abrasive waterjets [J]. Wear, 1995, 181–183: 148–155. DOI: https://doi.org/10.1016/0043-1648(95)90019-5.

    Article  Google Scholar 

  4. GOGOTSI G A, GOGOTSI Y G, YU OSTROVOJ D. Mechanical behaviour of hot-pressed boron carbide in various atmospheres [J]. Journal of Materials Science Letters, 1988, 7(8): 814–816. DOI: https://doi.org/10.1007/BF00723769.

    Article  Google Scholar 

  5. SO S M, CHOI W H, KIM K H, et al. Mechanical properties of B4C-SiC composites fabricated by hot-press sintering [J]. Ceramics International, 2020, 46(7): 9575–9581. DOI: https://doi.org/10.1016/j.ceramint.2019.12.222.

    Article  Google Scholar 

  6. JAMALE S, KUMAR B V M. Sintering and sliding wear studies of B4C-SiC composites [J]. International Journal of Refractory Metals and Hard Materials, 2020, 87: 105124. DOI: https://doi.org/10.1016/j.ijrmhm.2019.105124.

    Article  Google Scholar 

  7. SHESTAKOV V A, GUDYMA T S, KRUTSKII Y L, et al. Evaluation of the temperature range suitable for the synthesis of B4C-TiB2 and B4C-ZrB2 powder composite materials [J]. Inorganic Materials, 2021, 57(5): 481–486. DOI: https://doi.org/10.1134/S0020168521050083.

    Article  Google Scholar 

  8. WANG Shuo, YUAN Jun-tang, HAN Wen-chao, et al. Microstructure and mechanical properties of B4C-TiB2 composite ceramic fabricated by reactive spark plasma sintering [J]. International Journal of Refractory Metals and Hard Materials, 2020, 92: 105307. DOI: https://doi.org/10.1016/j.ijrmhm.2020.105307.

    Article  Google Scholar 

  9. ZHANG Yong-jie, DONG Hao, LIANG Ke, et al. Impact simulation and ballistic analysis of B4C composite armour based on target plate tests [J]. Ceramics International, 2021, 47(7): 10035–10049. DOI: https://doi.org/10.1016/j.ceramint.2020.12.150.

    Article  Google Scholar 

  10. CUI Feng-dan, MA Tian, LI Wei-ping, et al. Damage characteristics of SiC and B4C ballistic insert plates subjected to multi-hit [J]. Journal of Inorganic Materials, 2017, 32(9): 967. DOI: https://doi.org/10.15541/jim20160667.

    Article  Google Scholar 

  11. MENG Xian-fang, SUN Chao, ZHANG Long, et al. Study on neutron shielding properties of B4C-PE composite materials [J]. Nuclear Electronics & Detection Technology, 2019, 39(3): 260–264.

    Google Scholar 

  12. JUNG Y, LEE M, KIM K, et al. 10B(n, α)7Li reaction-induced gas bubble formation in Al-B4C neutron absorber irradiated in spent nuclear fuel pool [J]. Journal of Nuclear Materials, 2020, 533: 152077. DOI: https://doi.org/10.1016/j.jnucmat.2020.152077.

    Article  Google Scholar 

  13. TUNA T, EKER A A, KAM E. Neutron shielding characteristics of polymer composites with boron carbide [J]. Journal of the Korean Physical Society, 2021, 78(7): 566–573. DOI: https://doi.org/10.1007/s40042-021-00089-z.

    Article  Google Scholar 

  14. LIU Mei-ling, LIU Chao, KUMAR U P, et al. Exploring configurations and properties of boron carbide by first principle [J]. Materials Research Express, 2020, 7(1): 015904. DOI: https://doi.org/10.1088/2053-1591/ab6118.

    Article  Google Scholar 

  15. SLACK G A, MORGAN K E. Crystallography, semiconductivity, thermoelectricity, and other properties of boron and its compounds, especially B6O [J]. Solid State Sciences, 2015, 47: 43–50. DOI: https://doi.org/10.1016/j.solidstatesciences.2015.04.007.

    Article  Google Scholar 

  16. LI Xin, LEI Min-jun, GAO Shuai-bo, et al. Thermodynamic investigation and reaction mechanism of B4C synthesis based on carbothermal reduction [J]. International Journal of Applied Ceramic Technology, 2020, 17(3): 1079–1087. DOI: https://doi.org/10.1111/ijac.13290.

    Article  Google Scholar 

  17. LI Xin, WANG Shuai, NIE Dan, et al. Effect and corresponding mechanism of NaCl additive on boron carbide powder synthesis via carbothermal reduction [J]. Diamond and Related Materials, 2019, 97: 107458. DOI: https://doi.org/10.1016/j.diamond.2019.107458.

    Article  Google Scholar 

  18. KAKIAGE M, KOBAYASHI T. Fabrication of boron carbide fibers consisting of connected particles by carbothermal reduction via electrospinning [J]. Materials Letters, 2019, 254: 158–161. DOI: https://doi.org/10.1016/j.matlet.2019.07.028.

    Article  Google Scholar 

  19. AGHILI S, PANJEPOUR M, MERATIAN M, et al. Effects of boron oxide composition, structure, and morphology on B4C formation via the SHS process in the B2O3-Mg-C ternary system [J]. Ceramics International, 2020, 46(6): 7223–7234. DOI: https://doi.org/10.1016/j.ceramint.2019.11.217.

    Article  Google Scholar 

  20. LEE J H, WON C W, JOO S M, et al. Preparation of B4C powder from B2O3 oxide by SHS process [J]. Journal of Materials Science Letters, 2000, 19(11): 951–954. DOI: https://doi.org/10.1023/A:1006760020130.

    Article  Google Scholar 

  21. JIANG Guo-jian, XU Jia-yue, ZHUANG Han-rui, et al. Fabrication of B4C from Na2B4O7 + Mg + C by SHS method [J]. Ceramics International, 2011, 37(5): 1689–1691. DOI: https://doi.org/10.1016/j.ceramint.2010.10.007.

    Article  Google Scholar 

  22. ALKAN M, SONMEZ M S, DERIN B, et al. Effect of initial composition on boron carbide production by SHS process followed by acid leaching [J]. Solid State Sciences, 2012, 14(11–12): 1688–1691. DOI: https://doi.org/10.1016/j.solidstatesciences.2012.07.004.

    Article  Google Scholar 

  23. YAMADA K. Boron carbide particles formed from an amorphous boron/graphite powder mixture using a shockwave technique [J]. Journal of the American Ceramic Society, 1996, 79(4): 1113–1116. DOI: https://doi.org/10.1111/j.1151-2916.1996.tb08557.x.

    Article  Google Scholar 

  24. RAMOS A S, TAGUCHI S P, RAMOS E C T, et al. High-energy ball milling of powder B-C mixtures [J]. Materials Science and Engineering A, 2006, 422(1–2): 184–188. DOI: https://doi.org/10.1016/j.msea.2006.01.096.

    Article  Google Scholar 

  25. OLIVEIRA J C, OLIVEIRA M N, CONDE O. Structural characterisation of B4C films deposited by laser-assisted CVD [J]. Surface and Coatings Technology, 1996, 80(1–2):100–104. DOI: https://doi.org/10.1016/0257-8972(95)02602-9.

    Article  Google Scholar 

  26. MERENKOV I S, KATSUI H, KHOMYAKOV M N, et al. Extraordinary synergetic effect of precursors in laser CVD deposition of SiBCN films [J]. Journal of the European Ceramic Society, 2019, 39(16): 5123–5131. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.08.006.

    Article  Google Scholar 

  27. SANTOS M J, SILVESTRE A J, CONDE O. Laser-assisted deposition of r-B4C coatings using ethylene as carbon precursor [J]. Surface and Coatings Technology, 2002, 151–152: 160–164. DOI: https://doi.org/10.1016/S0257-8972(01)01639-5.

    Article  Google Scholar 

  28. KOSANOVIĆ D, MILOVANOVIĆ L, MILOVANOVIĆ S, et al. Low-temperature synthetic route for boron carbide powder from boric acid-citric acid gel precursor [J]. Materials Science Forum, 2007, 555: 255–260. DOI: https://doi.org/10.4028/www.scientific.net/msf.555.255.

    Article  Google Scholar 

  29. SHAWGI N, LI San-xi, WANG Song, et al. Synthesis of nano particles and fiber-like shape boron carbide powder from ploy (vinyl alcohol) and boric acid [J]. Journal of Sol-Gel Science and Technology, 2017, 82(2): 450–457. DOI: https://doi.org/10.1007/s10971-017-4320-4.

    Article  Google Scholar 

  30. SURI A K, SUBRAMANIAN C, SONBER J K, et al. Synthesis and consolidation of boron carbide: A review [J]. International Materials Reviews, 2010, 55(1): 4–40. DOI: https://doi.org/10.1179/095066009X12506721665211.

    Article  Google Scholar 

  31. WEIMER A W. Carbide, nitride, and boride materials synthesis and processing [M]. London: Chapman & Hall, 1997.

    Book  Google Scholar 

  32. YAGHOUBI M, TORABI O. Effect of the magnesium content on the mechanochemical behavior in ternary system Mg-B2O3-C [J]. International Journal of Refractory Metals and Hard Materials, 2014, 43: 132–140. DOI: https://doi.org/10.1016/j.ijrmhm.2013.11.014.

    Article  Google Scholar 

  33. PENG Chao. Inclusion analysis and removal mechanisms in preparation of amorphous boron power by self-propagating high-temperature synthesis (SHS) metallurgy [D]. Shenyang: Northeastern University, 2014. (in Chinese)

    Google Scholar 

  34. SHI Hao, DOU Zhi-he, MENG Yang, et al. Effects of reactants proportions on features of in situ magnesiothermic self-propagating high temperature synthesized boron carbide powder [J]. Ceramics International, 2022, 48(22): 33400–33411. DOI: https://doi.org/10.1016/j.ceramint.2022.07.284.

    Article  Google Scholar 

  35. CAO Y G, GE C C, ZHOU Z J. Effect of Si particle size on SHS Si3N4 [J]. Journal of the Chinese Ceramic Society, 1998, 5: 551–557.

    Google Scholar 

  36. ZOU Zheng-guang, FU Zheng-yi, YUAN Run-zhang. Effect of particle size and content of raw materials on self-propagating high-temperature synthesis of Ti-C-Fe system [J]. Journal of Inorganic Materials, 1998, 13(2): 207–213.

    Google Scholar 

  37. QIAO Rui-qing, WANG Fang-wen. Growth mechanism of Si3N4 powder prepared by self-propagating high-temperature synthesis [J]. Journal of Shenyang University of Technology, 2009, 31(2): 186–190. (in Chinese)

    Google Scholar 

  38. LI Ming-yi, KANG Zhi-jun, ZHANG Bao-sheng. Self-propagating high temperature synthesis of TiB2 powder [J]. Chinese Journal of Rare Metals, 1994, 18(5): 370–374. (in Chinese)

    Google Scholar 

  39. TAN Wei-ning. High temperature synthesis of TaC powder by self-propagation [J]. Hunan Chemical Industry, 1998, 28(2): 27–29. DOI: https://doi.org/10.19342/j.cnki.issn.1009-9212.1998.02.012. (in Chinese)

    MathSciNet  Google Scholar 

  40. FANG Yan-hong. Prepartion of the ZrB2 powder by self-propagating magnesiothermic reduction method [D]. Boston, MA, USA: Northeastern University, 2008.

    Google Scholar 

  41. DOU Zhi-he, ZHANG Ting-an, WEN Ming, et al. Preparation of ultra-fine NdB6 powders by combustion synthesis and its reaction mechanism [J]. Journal of Inorganic Materials, 2014, 29(7): 711–716.

    Google Scholar 

  42. DOU Zhi-he. Preparation of CaB6 by combustion synthesis [J]. Journal of Inorganic Materials, 2008, 23(1): 150–154. DOI: https://doi.org/10.3724/sp.j.1077.2008.00150.

    Article  Google Scholar 

  43. FAN Shi-gang. Basic research on preparation of titanium powder by multistage depth reduction process [D]. Shenyang: Northeastern University, 2016. (in Chinese)

    Google Scholar 

  44. LEVASHOV E A, MUKASYAN A S, ROGACHEV A S, et al. Self-propagating high-temperature synthesis of advanced materials and coatings [J]. International Materials Reviews, 2017, 62(4): 203–239. DOI: https://doi.org/10.1080/09506608.2016.1243291.

    Article  Google Scholar 

  45. MOSSINO P. Some aspects in self-propagating high-temperature synthesis [J]. Ceramics International, 2004, 30(3): 311–332. DOI: https://doi.org/10.1016/S0272-8842(03)00119-6.

    Article  Google Scholar 

  46. Li H Q, ZHANG Y, SUN X, et al. R & D and prospect of some inorganic salt whisker [J]. Inorganic Chemicals Industry, 2002(2): 17–19. (in Chinese)

  47. BIAN Shao-ju. Study on better conditions for Mg2B2O5 whisker growth and the growth process [D]. Xining: Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, 2007. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-he Dou  (豆志河).

Additional information

Contributors

SHI Hao was responsible for coming up with ideas, designing and conducting experiments, and writing the manuscript; DOU Zhi-he was responsible for reviewing the manuscript and suggesting changes; MENG Yang was responsible for assisting with experiments; ZHANG Ting-an was responsible for financial support.

Foundation item

Projects(N2225012, N2224001-9) supported by the Fundamental Research Funds for Central Universities, China; Projects(U1908225, 52174333) supported by the National Natural Science Foundation of China; Project(2020JH2/10700004) supported by the Key R&D Project of Liaoning Province, China

Conflict of interest

SHI Hao, DOU Zhi-he, MENG Yang and ZHANG Ting-an declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Dou, Zh., Meng, Y. et al. Influence of kinetic factors on preparation of boron carbide by magnesiothermic self-propagation synthesis. J. Cent. South Univ. 30, 735–748 (2023). https://doi.org/10.1007/s11771-023-5264-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5264-1

Key words

关键词

Navigation