Skip to main content
Log in

Analysis of magnetohydrodynamic squeezed viscous fluid flow in a porous medium

磁流体动力压缩黏性流体在多孔介质中的流动分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this numerical analysis, the significance of features of squeezed viscous fluid flow in the presence of inclined magnetic field effect has been scrutinized. For the efficient heat transfer phenomenon, the viscous dissipation and Joule heating effects have also been incorporated in the temperature equation. The dimensionless conservation equations are tackled with the help of shooting method. The behavior of particular parameters contemplated in the model on the fluid motion, energy distribution rate of heat transfer and surface drag coefficient are presented graphically and discussed in detail. Significant importance of the inclined magnetic field effect is noticed in the fluid velocity and heat transfer rate. From the performed simulations, it is noticed that as Prandtl number is increased from 1 to 5, the rate of heat transfer is increased by 56%, whereas when the inclined magnetic parameter γ is increased from π/8 to π/2, the rate of heat transfer is declined by 9.7%. It is also observed that the rate of heat transfer diminishs as the squeezing parameter is hiked whereas stretching parameter of lower plate has an opposite trend.

摘要

本文通过数值分析, 讨论了倾斜磁场效应下压缩黏性流体流动特征的意义。对于高效传热现 象, 温度方程中还考虑了黏性耗散和焦耳热效应。利用打靶法求解了无量纲守恒方程。对模型中所考 虑的特定参数对流体运动、传热能量分配率和表面阻力系数的行为进行了图解和详细讨论。倾斜磁场 效应对流体速度和换热速率的影响非常重要。从模拟结果可知, 当普朗特常数从1 增加到5 时, 热传 导率增加了56%, 而当倾斜磁参数γ 从π/8 增加到π/2 时, 热传导率下降了9.7%。实验还发现, 随着挤 压参数的增大, 换热速率减小, 而下板拉伸参数的增大则趋势相反。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abbreviations

B 0 :

Magnetic field (kg/(s2 · A))

S b :

Suction/injection parameter

Da :

Darcy number

T H :

Upper plate temperature (K)

Ec :

Eckert number

T 0 :

Lower plate temperature (K)

g :

Gravitational acceleration (m/s2)

T :

Free stream temperature (K)

c p :

Specific heat capacity (J/(kg · K))

U s :

Velocity of lower plate (m/s)

u, v :

Velocity components (m/s)

k :

Thermal conductivity

v H :

Velocity of upper plate (m/s)

M :

Magnetic number

Nu :

Nusselt number

(x, y):

Cartesian coordinates

p :

Dimensional pressure (kg/(m · s2))

α :

Thermal diffusivity (m2/s)

Pr :

Prandtl number (v/α)

β :

Thermal expansion coefficient (K−1)

q x :

Radiative heat flux along x-direction (W/m2)

q y :

Radiative heat flux along y-direction (W/m2)

γ :

Magnetic inclination angle

φ :

Dimensionless concentration

θ :

Dimensionless temperature

η :

Dimensionless distance

k* :

Mean absorption coefficient

R :

Lower plate stretching parameter

ρ :

Nanofluid density (kg/m3)

Ra :

Rayleigh number

σ :

Electrical conductivity

R d :

Thermal radiation parameter

μ :

Dynamic viscosity (kg/(m · s))

Re x :

Local Reynolds number

v :

Kinematic viscosity (m2/s)

S :

Squeeze number

σ* :

Stefan-Boltzman constant (kW/(m2 · K4))

References

  1. STEFAN M J. Versuch versuche über die scheinbare Adhäsion [J]. Akademie der Wissenschaften in Wien Mathematik-Naturwissen, 1874, 230(69): 713–721. DOI: https://doi.org/10.1002/andp.18752300213.

    Google Scholar 

  2. JACKSON J D. A study of squeezing flow [J]. Applied Scientific Research, Section A, 1963, 11(1): 148–152. DOI: https://doi.org/10.1007/BF03184719.

    Article  MATH  Google Scholar 

  3. USHA R, SRIDHARAN R. Arbitrary squeezing of a viscous fluid between elliptic plates [J]. Fluid Dynamics Research, 1996, 18(1): 35–51. DOI: https://doi.org/10.1016/0169-5983(96)00002-0.

    Article  Google Scholar 

  4. REYNOLDS O. IV. On the theory of lubrication and its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of olive oil [J]. Philosophical Transactions of the Royal Society of London, 1886, 177: 157–234. DOI: https://doi.org/10.1098/rstl.1886.0005.

    Article  MATH  Google Scholar 

  5. ARCHIBALD F R. Load capacity and time relations for squeeze films [J]. Transactions of the American Society of Mechanical Engineers, 1965, 78: A231–A245. DOI: https://doi.org/10.1115/1.4013560.

    Google Scholar 

  6. MUSTAFA M, HAYAT T, OBAIDAT S. On heat and mass transfer in the unsteady squeezing flow between parallel plates [J]. Meccanica, 2012, 47(7): 1581–1589. DOI: https://doi.org/10.1007/s11012-012-9536-3.

    Article  MathSciNet  MATH  Google Scholar 

  7. AHMAD S, FAROOQ M, JAVED M, et al. Slip analysis of squeezing flow using doubly stratified fluid [J]. Results in Physics, 2018, 9: 527–533. DOI: https://doi.org/10.1016/j.rinp.2018.02.066.

    Article  Google Scholar 

  8. GANJI D D, ABBASI M, RAHIMI J, et al. On the MHD squeeze flow between two parallel disks with suction or injection via HAM and HPM [J]. Frontiers of Mechanical Engineering, 2014, 9(3): 270–280. DOI: https://doi.org/10.1007/s11465-014-0303-0.

    Article  Google Scholar 

  9. ATIF S M, HUSSAIN S, SAGHEER M. Effect of thermal radiation and variable thermal conductivity on magnetohydrodynamics squeezed flow of carreau fluid over a sensor surface [J]. Journal of Nanofluids, 2019, 8(4): 806–816. DOI: https://doi.org/10.1166/jon.2019.1621.

    Article  Google Scholar 

  10. ACHARYA N, DAS K, KUNDU P K. The squeezing flow of Cu-water and Cu-kerosene nanofluids between two parallel plates [J]. Alexandria Engineering Journal, 2016, 55(2): 1177–1186. DOI: https://doi.org/10.1016/j.aej.2016.03.039.

    Article  Google Scholar 

  11. FAKOUR M, VAHABZADEH A, GANJI D D, et al. Analytical study of micropolar fluid flow and heat transfer in a channel with permeable walls [J]. Journal of Molecular Liquids, 2015, 204: 198–204. DOI: https://doi.org/10.1016/j.molliq.2015.01.040.

    Article  Google Scholar 

  12. SHABNAM MEI Sun, KHAN M S, et al. Numerical investigation of a squeezing flow between concentric cylinders under the variable magnetic field of intensity [J]. Scientific Reports, 2022, 12: 9148. DOI: https://doi.org/10.1038/s41598-022-13050-2.

    Article  Google Scholar 

  13. BABU M J, RAO Y S, KUMAR A S, et al. Squeezed flow of polyethylene glycol and water based hybrid nanofluid over a magnetized sensor surface: A statistical approach [J]. International Communications in Heat and Mass Transfer, 2022, 135: 106136. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2022.106136.

    Article  Google Scholar 

  14. KHAN Q, FAROOQ M, AHMAD S, et al. Analysis of squeezing flow of Powell-Eyring fluid with generalized transport phenomena and double stratification past inclined parallel sheets [J]. Waves in Random and Complex Media, 2022, 32(6): 3095–3114. DOI: https://doi.org/10.1080/17455030.2022.2060533.

    Article  MathSciNet  MATH  Google Scholar 

  15. TAN Wen-chang, MASUOKA T. Stokes’ first problem for a second grade fluid in a porous half-space with heated boundary [J]. International Journal of Non-Linear Mechanics, 2005, 40(4): 515–522. DOI: https://doi.org/10.1016/j.ijnonlinmec.2004.07.016.

    Article  MATH  Google Scholar 

  16. İLHAN O A. Approximation solution of the squeezing flow by the modification of optimal homotopy asymptotic method [J]. The European Physical Journal Plus, 2020, 135(9): 745. DOI: https://doi.org/10.1140/epjp/s13360-020-00713-0.

    Article  Google Scholar 

  17. ATIF S M, HUSSAIN S, SAGHEER M. Magnetohydrodynamic stratified bioconvective flow of micropolar nanofluid due to gyrotactic microorganisms [J]. AIP Advances, 2019, 9(2): 025208. DOI: https://doi.org/10.1063/1.5085742.

    Article  Google Scholar 

  18. HUSSAIN S. Finite element solution for MHD flow of nanofluids with heat and mass transfer through a porous media with thermal radiation, viscous dissipation and chemical reaction effects [J]. Advances in Applied Mathematics and Mechanics, 2017, 9(4): 904–923. DOI: https://doi.org/10.4208/aamm.2014.m793.

    Article  MathSciNet  MATH  Google Scholar 

  19. ATIF S M, HUSSAIN S, SAGHEER M. Effect of viscous dissipation and Joule heating on MHD radiative tangent hyperbolic nanofluid with convective and slip conditions [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(4): 1–17. DOI: https://doi.org/10.1007/s40430-019-1688-9.

    Article  Google Scholar 

  20. SHEIKHOLESLAMI M. New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 344: 319–333. DOI: https://doi.org/10.1016/j.cma.2018.09.044.

    Article  MathSciNet  MATH  Google Scholar 

  21. RASHIDI M M, KAVYANI N, ABELMAN S. Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties [J]. International Journal of Heat and Mass Transfer, 2014, 70: 892–917. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.058.

    Article  Google Scholar 

  22. SIDDIQUI A M, IRUM S, ANSARI A R. Unsteady squeezing flow of a viscous mhd fluid between parallel plates, a solution using the homotopy perturbation method [J]. Mathematical Modelling and Analysis, 2008, 13(4): 565–576. DOI: https://doi.org/10.3846/1392-6292.2008.13.565-576.

    Article  MathSciNet  MATH  Google Scholar 

  23. SHEIKHOLESLAMI M, JAFARYAR M, BARZEGAR GERDROODBARY M, et al. Influence of novel turbulator on efficiency of solar collector system [J]. Environmental Technology & Innovation, 2022, 26: 102383. DOI: https://doi.org/10.1016/j.eti.2022.102383.

    Article  Google Scholar 

  24. DOMAIRRY G, AZIZ A. Approximate analysis of MHD squeeze flow between two parallel disks with suction or injection by homotopy perturbation method [J]. Mathematical Problems in Engineering, 2009: 1–19. DOI: https://doi.org/10.1155/2009/603916.

  25. HAYAT T, SAJJAD R, ALSAEDI A, et al. On squeezed flow of couple stress nanofluid between two parallel plates [J]. Results in Physics, 2017, 7: 553–561. DOI: https://doi.org/10.1016/j.rinp.2016.12.038.

    Article  Google Scholar 

  26. HATAMI M, JING Deng-wei, SONG Dong-xing, et al. Heat transfer and flow analysis of nanofluid flow between parallel plates in presence of variable magnetic field using HPM [J]. Journal of Magnetism and Magnetic Materials, 2015, 396: 275–282. DOI: https://doi.org/10.1016/j.jmmm.2015.08.043.

    Article  Google Scholar 

  27. RASHAD A M, RASHIDI M M, LORENZINI G, et al. Magnetic field and internal heat generation effects on the free convection in a rectangular cavity filled with a porous medium saturated with Cu-water nanofluid [J]. International Journal of Heat and Mass Transfer, 2017, 104: 878–889. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.025.

    Article  Google Scholar 

  28. KIRUBHASHANKAR C K, GANESH S. Unsteady MHD flow of a casson fluid in a parallel plate channel with heat and mass transfer of chemical reaction [J]. Paripex–Indian Journal of Research, 2012, 3(2): 101–105. DOI: https://doi.org/10.15373/22501991/feb2014/31.

    Article  Google Scholar 

  29. RAJU C S K, SANDEEP N. Heat and mass transfer in MHD non-Newtonian bio-convection flow over a rotating cone/plate with cross diffusion [J]. Journal of Molecular Liquids, 2016, 215: 115–126. DOI: https://doi.org/10.1016/j.molliq.2015.12.058.

    Article  Google Scholar 

  30. SHEIKHOLESLAMI M, EBRAHIMPOUR Z. Thermal improvement of linear Fresnel solar system utilizing Al2O3-water nanofluid and multi-way twisted tape [J]. International Journal of Thermal Sciences, 2022, 176: 107505. DOI: https://doi.org/10.1016/j.ijthermalsci.2022.107505.

    Article  Google Scholar 

  31. ATIF S, HUSSAIN S, SAGHEER M. Effect of thermal radiation on MHD micropolar Carreau nanofluid with viscous dissipation, Joule heating and internal heating [J]. Scientia Iranica, 2019. DOI: https://doi.org/10.24200/sci.2019.51653.2294.

  32. ATIF S M, KAMRAN A, SHAH S. MHD micropolar nanofluid with non Fourier and non Fick’s law [J]. International Communications in Heat and Mass Transfer, 2021, 122: 105114. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2021.105114.

    Article  Google Scholar 

  33. SU Xiao-hong, YIN Yun-xing. Effects of an inclined magnetic field on the unsteady squeezing flow between parallel plates with suction/injection [J]. Journal of Magnetism and Magnetic Materials, 2019, 484: 266–271. DOI: https://doi.org/10.1016/j.jmmm.2019.04.041.

    Article  Google Scholar 

  34. SHEIKHOLESLAMI M, SAID Z, JAFARYAR M. Hydrothermal analysis for a parabolic solar unit with wavy absorber pipe and nanofluid [J]. Renewable Energy, 2022, 188: 922–932. DOI: https://doi.org/10.1016/j.renene.2022.02.086.

    Article  Google Scholar 

  35. RASHIDI M M, BAGHERI S, MOMONIAT E, et al. Entropy analysis of convective MHD flow of third grade non-Newtonian fluid over a stretching sheet [J]. Ain Shams Engineering Journal, 2017, 8(1): 77–85. DOI: https://doi.org/10.1016/j.asej.2015.08.012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahzada M. Atif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Atif, S.M., Sagheer, M. et al. Analysis of magnetohydrodynamic squeezed viscous fluid flow in a porous medium. J. Cent. South Univ. 30, 844–854 (2023). https://doi.org/10.1007/s11771-023-5262-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5262-3

Key words

关键词

Navigation