Skip to main content
Log in

Flexible thermoelectric generator fabricated by screen printing method from suspensions based on Bi2Te2.8Se0.2 and Bi0.5Sb1.5Te3

采用丝网印刷法基于Bi2Te2.8Se0.2 和 Bi0.5Sb1.5Те3 悬浮液制备柔性热电发电机

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this work, a method for the formation of legs of n- and p-type thermoelements by screen printing using zinc phosphate cement and aqueous alkaline sodium silicate solution as binders was developed. Thermoelectric properties of thick films were investigated. A prototype of a flexible thermoelectric generator (TEG) was developed and fabricated using the results obtained by the screen printing method from suspensions based on Bi2Te3-Sb2Te3 (p-type) and Bi2Te3-Bi2Se3 (n-type) with an aqueous alkaline sodium silicate solution as binder. The developed prototype includes 6 pairs of n- and p-type legs connected by copper wires, and a silicone matrix was used as a flexible base. The prototype showed that at room temperature (298 K) the output voltages of the flexible thick film TEG at temperature differences ΔT=2.5 and 10.0 K are 0.8 and 14.8 mV, respectively.

摘要

本研究开发了利用磷酸锌水泥和碱性硅酸钠水溶液作为黏合剂的丝网印刷形成 n 型和 p 型热元件腿的技术, 研究了厚膜的热电性能. 以碱性硅酸钠水溶液为黏合剂, 利用基于Bi2Te3-Sb2Te3(p 型)和Bi2Te3-Bi2Se3(n 型)的悬浮液的丝网印刷结果, 制备了柔性热电发电机(TEG)的原型. 开发的原型包括6对由铜线连接的 n 型和 p 型腿, 和一个硅胶基质被用作柔性底座. 对样机的研究表明, 在室温(298 K)下, 柔性厚膜TEG 在温差∆T=2.5 K 和 10.0 K 下的输出电压分别为 0.8 mV 和 14.8 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. CHEN Zhi-gang, LIU Wei-di. Thermoelectric coolers: Infinite potentials for finite localized microchip cooling [J]. Journal of Materials Science & Technology, 2022, 121: 256–262. DOI: https://doi.org/10.1016/j.jmst.2021.12.069.

    Article  Google Scholar 

  2. SUN Wei, LIU Wei-di, LIU Qing-feng, et al. Advances in thermoelectric devices for localized cooling [J]. Chemical Engineering Journal, 2022, 450: 138389. DOI: https://doi.org/10.1016/j.cej.2022.138389.

    Article  Google Scholar 

  3. CAO Tian-yi, SHI Xiao-lei, CHEN Zhi-gang. Advances in the design and assembly of flexible thermoelectric device [J]. Progress in Materials Science, 2023, 131: 101003. DOI: https://doi.org/10.1016/j.pmatsci.2022.101003.

    Article  Google Scholar 

  4. JAZIRI N, BOUGHAMOURA A, MÜLLER J, et al. A comprehensive review of thermoelectric generators: technologies and common applications [J]. Energy Reports, 2020, 6: 264–287. DOI: https://doi.org/10.1016/j.egyr.2019.12.011.

    Article  Google Scholar 

  5. MANDON P, PRASAD E. Thermoelectric generator (TEG) market by material, application, and end-use industry: Global opportunity analysis and industry forecast 2021–2030 [M]. Portland: Allied Market Research, 2021.

    Google Scholar 

  6. SHTERN M, ROGACHEV M, SHTERN Y, et al. Thermoelectric properties of efficient thermoelectric materials on the basis of bismuth and antimony chalcogenides for multisection thermoelements [J]. Journal of Alloys and Compounds, 2021, 877: 160328. DOI: https://doi.org/10.1016/j.jallcom.2021.160328.

    Article  Google Scholar 

  7. ZHOU Shu-cai, BAI Chen-guang. Synthesis and thermoelectric properties of Mg2Si1−x [J]. Journal of Central South University, 2012, 19(9): 2421–2424. DOI: https://doi.org/10.1007/s11771-012-1291-z.

    Article  Google Scholar 

  8. XU Fei, LI An-min, HUANG Zhuo-fang, et al. Effect of Al doping and Cu deficiency on the microstructures and thermoelectric properties of BiCuSeO-based thermoelectric materials [J]. Journal of Electronic Materials, 2021, 50(6): 3580–3591. DOI: https://doi.org/10.1007/s11664-021-08862-3.

    Article  Google Scholar 

  9. YUAN Jin-feng, ZHU Rong, LI Guo-zhen. Self-powered electronic skin with multisensory functions based on thermoelectric conversion [J]. Advanced Materials Technologies, 2020: 2000419. DOI: https://doi.org/10.1002/admt.202000419.

  10. LI Yi-ping, ZENG Jing-yun, ZHAO Yang, et al. Fabric-based flexible thermoelectric generators: Design methods and prospects [J]. Frontiers in Materials, 2022, 9: 1046883. DOI: https://doi.org/10.3389/fmats.2022.1046883.

    Article  Google Scholar 

  11. HE Ran, SCHIERNING G, NIELSCH K. Thermoelectric devices: A review of devices, architectures, and contact optimization [J]. Advanced Materials Technologies, 2018, 3(4): 1700256. DOI: https://doi.org/10.1002/admt.201700256.

    Article  Google Scholar 

  12. KUANG Nian-ling, NIU Ai-jia, WANG Wei, et al. High performance flexible thermoelectric generator using bulk legs and integrated electrodes for human energy harvesting [J]. Energy Conversion and Management, 2022, 272: 116337. DOI: https://doi.org/10.1016/j.enconman.2022.116337.

    Article  Google Scholar 

  13. YUAN Jin-feng, ZHU Rong. A fully self-powered wearable monitoring system with systematically optimized flexible thermoelectric generator [J]. Applied Energy, 2020, 271: 115250. DOI: https://doi.org/10.1016/j.apenergy.2020.115250.

    Article  Google Scholar 

  14. SHI Xiao-lei, ZOU Jin, CHEN Zhi-gang. Advanced thermoelectric design: From materials and structures to devices [J]. Chemical Reviews, 2020, 120(15): 7399–7515. DOI: https://doi.org/10.1021/acs.chemrev.0c00026.

    Article  Google Scholar 

  15. INOUE H, KATO M, UDONO H, et al. Power generation efficiency of thermoelectric elements with a trapezoidal section [J]. Journal of Electronic Materials, 2021, 50(1): 346–351. DOI: https://doi.org/10.1007/s11664-020-08569-x.

    Article  Google Scholar 

  16. LV Song, QIAN Zuo-qin, HU Deng-yun, et al. A comprehensive review of strategies and approaches for enhancing the performance of thermoelectric module [J]. Energies, 2020, 13(12): 3142. DOI: https://doi.org/10.3390/en13123142.

    Article  Google Scholar 

  17. NA Yu-jin, KIM S, MALLEM S P R, et al. Energy harvesting from human body heat using highly flexible thermoelectric generator based on Bi2Te3 particles and polymer composite [J]. Journal of Alloys and Compounds, 2022, 924: 166575. DOI: https://doi.org/10.1016/j.jallcom.2022.166575.

    Article  Google Scholar 

  18. MALLICK M M, FRANKE L, RÖSCH A G, et al. High figure-of-merit telluride-based flexible thermoelectric films through interfacial modification via millisecond photonic-curing for fully printed thermoelectric generators [J]. Advanced Science (Weinheim, Baden-Wurttemberg, Germany), 2022, 9(31): e2202411. DOI: https://doi.org/10.1002/advs.202202411.

    Google Scholar 

  19. NEWBY S, MIRIHANAGE W, FERNANDO A. Recent advancements in thermoelectric generators for smart textile application [J]. Materials Today Communications, 2022, 33: 104585. DOI: https://doi.org/10.1016/j.mtcomm.2022.104585.

    Article  Google Scholar 

  20. LIN Shu-ping, ZHANG Li-sha, ZENG Wei, et al. Flexible thermoelectric generator with high Seebeck coefficients made from polymer composites and heat-sink fabrics [J]. Communications Materials, 2022, 3: 44. DOI: https://doi.org/10.1038/s43246-022-00263-1.

    Article  Google Scholar 

  21. MA Zhe, WEI Jiang-tao, SONG Pei-shuai, et al. Review of experimental approaches for improving zT of thermoelectric materials [J]. Materials Science in Semiconductor Processing, 2021, 121: 105303. DOI: https://doi.org/10.1016/j.mssp.2020.105303.

    Article  Google Scholar 

  22. NAYAK R, SHETTY P, RAO A, et al. Enhancement of power factor of screen printed polyaniline/graphite based flexible thermoelectric generator by structural modifications [J]. Journal of Alloys and Compounds, 2022, 922: 166298. DOI: https://doi.org/10.1016/j.jallcom.2022.166298.

    Article  Google Scholar 

  23. LI Yuan, WANG Yi-bo, ZHANG Hao, et al. Recent progress of fiber-shaped batteries towards wearable application [J]. Journal of Central South University, 2022, 29(9): 2837–2856. DOI: https://doi.org/10.1007/s11771-022-5131-5.

    Article  Google Scholar 

  24. WEI Hao-xiang, ZHANG Jian, HAN Yang, et al. Soft-covered wearable thermoelectric device for body heat harvesting and on-skin cooling [J]. Applied Energy, 2022, 326: 119941. DOI: https://doi.org/10.1016/j.apenergy.2022.119941.

    Article  Google Scholar 

  25. SUAREZ F, PAREKH D P, LADD C, et al. Flexible thermoelectric generator using bulk legs and liquid metal interconnects for wearable electronics [J]. Applied Energy, 2017, 202: 736–745. DOI: https://doi.org/10.1016/j.apenergy.2017.05.181.

    Article  Google Scholar 

  26. MAO Zhen-dong, WANG Zhi-wen, SHI Tai-feng, et al. Sandwiched graphene/Bi2Te3/graphene thermoelectric film with exceptional figure of merit for flexibility [J]. Advanced Materials Interfaces, 2022, 9(17): 2200555. DOI: https://doi.org/10.1002/admi.202200555.

    Article  Google Scholar 

  27. TAO Xu-dong, ZHANG Kai, STUART B W, et al. Elastic (acrylate/polydimethylsiloxane) substrate-to-coating interlayers for improving the mechanical resilience of thermoelectric films on poly(ethylene terephthalate) during roll-to-roll manufacture and in service operation [J]. Surface and Coatings Technology, 2022, 434: 128167. DOI: https://doi.org/10.1016/j.surfcoat.2022.128167.

    Article  Google Scholar 

  28. KORCHAGIN E, SHTERN M, PETUKHOV I, et al. Contacts to thermoelectric materials obtained by chemical and electrochemical deposition of Ni and Co [J]. Journal of Electronic Materials, 2022, 51(10): 5744–5758. DOI: https://doi.org/10.1007/s11664-022-09860-9.

    Article  Google Scholar 

  29. CHEN Xin-qi, DAI Wei, WU Tian, et al. Thin film thermoelectric materials: Classification, characterization, and potential for wearable applications [J]. Coatings, 2018, 8(7): 244. DOI: https://doi.org/10.3390/coatings8070244.

    Article  Google Scholar 

  30. WANG Yan-cheng, SHI Yao-guang, MEI De-qing, et al. Wearable thermoelectric generator to harvest body heat for powering a miniaturized accelerometer [J]. Applied Energy, 2018, 215: 690–698. DOI: https://doi.org/10.1016/j.apenergy.2018.02.062.

    Article  Google Scholar 

  31. MELLALOU A, NKHAILI L, MAHMOOD Q, et al. Optimal designs of thermoelectric generators for supplying maximum external load [J]. Journal of Electronic Materials, 2021, 50(12): 6804–6808. DOI: https://doi.org/10.1007/s11664-021-09224-9.

    Article  Google Scholar 

  32. WU Bo, WEI Wei, GUO Yang, et al. Stretchable thermoelectric generators with enhanced output by infrared reflection for wearable application [J]. Chemical Engineering Journal, 2023, 453: 139749. DOI: https://doi.org/10.1016/j.cej.2022.139749.

    Article  Google Scholar 

  33. CHEN Jiang-fan, FANG Zheng, AZAM A, et al. An energy self-circulation system based on the wearable thermoelectric harvester for ART driver monitoring [J]. Energy, 2023, 262: 125472. DOI: https://doi.org/10.1016/j.energy.2022.125472.

    Article  Google Scholar 

  34. MARTÍN-GONZÁLEZ M, CABALLERO-CALERO O. Thermoelectric generators as an alternative for reliable powering of wearable devices with wasted heat [J]. Journal of Solid State Chemistry, 2022, 316: 123543. DOI: https://doi.org/10.1016/j.jssc.2022.123543.

    Article  Google Scholar 

  35. FRANCIOSO L, DE PASCALI C, SGLAVO V, et al. Modelling, fabrication and experimental testing of an heat sink free wearable thermoelectric generator [J]. Energy Conversion and Management, 2017, 145: 204–213. DOI: https://doi.org/10.1016/j.enconman.2017.04.096.

    Article  Google Scholar 

  36. XU Qian, DENG Biao, ZHANG Le-nan, et al. High-performance, flexible thermoelectric generator based on bulk materials [J]. Cell Reports Physical Science, 2022, 3(3): 100780. DOI: https://doi.org/10.1016/j.xcrp.2022.100780.

    Article  Google Scholar 

  37. ZHANG Ai-bing, PANG Dan-dan, WANG Bao-lin, et al. Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting [J]. Energy, 2023, 262: 125621. DOI: https://doi.org/10.1016/j.energy.2022.125621.

    Article  Google Scholar 

  38. QING Shao-wei, REZANIA A, ROSENDAHL L A, et al. Characteristics and parametric analysis of a novel flexible ink-based thermoelectric generator for human body sensor [J]. Energy Conversion and Management, 2018, 156: 655–665. DOI: https://doi.org/10.1016/j.enconman.2017.11.065.

    Article  Google Scholar 

  39. JUNLABHUT P, NUTHONGKUM P, SAKDANUPHAB R, et al. Influence of sputtering power density on the thermoelectric and mechanical properties of flexible thermoelectric antimony telluride films deposited by DC magnetron sputtering [J]. Journal of Electronic Materials, 2020, 49(5): 2747–2754. DOI: https://doi.org/10.1007/s11664-019-07692-8.

    Article  Google Scholar 

  40. ZHANG Ai-bing, LI Guang-yong, WANG Bao-lin, et al. A theoretical model for wearable thermoelectric generators considering the effect of human skin [J]. Journal of Electronic Materials, 2021, 50(3): 1514–1526. DOI: https://doi.org/10.1007/s11664-020-08695-6.

    Article  Google Scholar 

  41. WANG Y, YANG L, SHI X L, et al. Flexible thermoelectric materials and generators: Challenges and innovations [J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(29): e1807916. DOI: https://doi.org/10.1002/adma.201807916.

    Article  Google Scholar 

  42. CHEN Ya-ni, HE Min-hong, TANG Jun-hui, et al. Flexible thermoelectric generators with ultrahigh output power enabled by magnetic field-aligned metallic nanowires [J]. Advanced Electronic Materials, 2018, 4(9): 1800200. DOI: https://doi.org/10.1002/aelm.201800200.

    Article  Google Scholar 

  43. MELE P, NARDUCCI D, OHTA M, et al. Thermoelectric thin films [M]. Dordrecht: Springer, 2019. DOI: https://doi.org/10.1007/978-3-030-20043-5.

    Book  Google Scholar 

  44. VIEIRA E, FIGUEIRA J, PIRES A L, et al. Bi2Te3 and Sb2Te3 thin films with enhanced thermoelectric properties for flexible thermal sensors [C]//EUROSENSORS 2018. Basel Switzerland: MDPI, 2018. DOI: https://doi.org/10.3390/proceedings2130815.

    Google Scholar 

  45. PELZ U, JAKLIN J, ROSTEK R, et al. Fabrication process for micro thermoelectric generators (μTEGs) [J]. Journal of Electronic Materials, 2016, 45(3): 1502–1507. DOI: https://doi.org/10.1007/s11664-015-4088-7.

    Article  Google Scholar 

  46. GARCIA J, ALBERTO LARA RAMOS D, MOHN M, et al. Fabrication and modeling of integrated micro-thermoelectric cooler by template-assisted electrochemical deposition [J]. ECS Journal of Solid State Science and Technology, 2017, 6(3): N3022–N3028. DOI: https://doi.org/10.1149/2.0051703jss.

    Article  Google Scholar 

  47. JO S, CHOO S, KIM F, et al. Ink processing for thermoelectric materials and power-generating devices [J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(20): e1804930. DOI: https://doi.org/10.1002/adma.201804930.

    Article  Google Scholar 

  48. LEE H. Thermoelectrics: Design and materials [M]. Chichester: John Wiley & Sons, 2016. DOI: https://doi.org/10.1038/srep18805(2016).

    Book  Google Scholar 

  49. BAE E J, KANG Y H, JANG K S, et al. Enhancement of thermoelectric properties of PEDOT: PSS and tellurium-PEDOT: PSS hybrid composites by simple chemical treatment [J]. Scientific Reports, 2016, 6: 18805. DOI: https://doi.org/10.1038/srep18805.

    Article  Google Scholar 

  50. ZHANG Ting, LI Kai-wei, LI Cheng-chao, et al. Mechanically durable and flexible thermoelectric films from PEDOT: PSS/PVA/Bi0.5Sb1.5Te3 nanocomposites [J]. Advanced Electronic Materials, 2017, 3(4): 1600554. DOI: https://doi.org/10.1002/aelm.201600554.

    Article  Google Scholar 

  51. NAYAK R, SHETTY P, SELVAKUMAR M, et al. Formulation of new screen printable PANI and PANI/graphite based inks: Printing and characterization of flexible thermoelectric generators [J]. Energy, 2022, 238: 121680. DOI: https://doi.org/10.1016/j.energy.2021.121680.

    Article  Google Scholar 

  52. LIU Si-qi, LI Hui, LI Peng-cheng, et al. Recent advances in polyaniline-based thermoelectric composites [J]. CCS Chemistry, 2021, 3(10): 2547–2560. DOI: https://doi.org/10.31635/ccschem.021.202101066.

    Article  Google Scholar 

  53. ENDRODI B, MELLAR J, GINGL Z, et al. Reasons behind the improved thermoelectric properties of poly(3-hexylthiophene) nanofiber networks [J]. RSC Advances, 2014, 4(98): 55328–55333. DOI: https://doi.org/10.1039/C4RA09037C.

    Article  Google Scholar 

  54. TONGA M. A rational ternary design of P3HT/insulating polymers-CNTs/P3HT for the enhanced thermoelectric performances [J]. Composite Interfaces, 2022, 29(2): 197–213. DOI: https://doi.org/10.1080/09276440.2021.1913900.

    Article  Google Scholar 

  55. XIONG Jin-hua, WANG Liang-ying, XU Jing-kun, et al. Thermoelectric performance of PEDOT: PSS/Bi2Te3-nanowires: A comparison of hybrid types [J]. Journal of Materials Science: Materials in Electronics, 2016, 27(2): 1769–1776. DOI: https://doi.org/10.1007/s10854-015-3952-9.

    Google Scholar 

  56. ORRILL M, LEBLANC S. Printed thermoelectric materials and devices: Fabrication techniques, advantages, and challenges [J]. Journal of Applied Polymer Science, 2017, 134(3): 44256. DOI: https://doi.org/10.1002/app.44256.

    Article  Google Scholar 

  57. KROON R, MENGISTIE D A, KIEFER D, et al. Thermoelectric plastics: From design to synthesis, processing and structure-property relationships [J]. Chemical Society Reviews, 2016, 45(22): 6147–6164. DOI: https://doi.org/10.1039/c6cs00149a.

    Article  Google Scholar 

  58. BAHK J H, FANG Hai-yu, YAZAWA K, et al. Flexible thermoelectric materials and device optimization for wearable energy harvesting [J]. Journal of Materials Chemistry C, 2015, 3(40): 10362–10374. DOI: https://doi.org/10.1039/C5TC01644D.

    Article  Google Scholar 

  59. RUSS B, GLAUDELL A, URBAN J J, et al. Organic thermoelectric materials for energy harvesting and temperature control [J]. Nature Reviews Materials, 2016, 1: 16050. DOI: https://doi.org/10.1038/natrevmats.2016.50.

    Article  Google Scholar 

  60. GOLDSMID H J. Introduction to thermoelectricity [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. DOI: https://doi.org/10.1007/978-3-662-49256-7.

    Book  Google Scholar 

  61. ZHU Tie-jun, LIU Yin-tu, FU Chen-guang, et al. Compromise and synergy in high-efficiency thermoelectric materials [J]. Advanced Materials (Deerfield Beach, Fla), 2017, 29(14): 1605884. DOI: https://doi.org/10.1002/adma.201605884.

    Article  Google Scholar 

  62. ASWAL D K, BASU R, SINGH A. Key issues in development of thermoelectric power generators: High figure-of-merit materials and their highly conducting interfaces with metallic interconnects [J]. Energy Conversion and Management, 2016, 114: 50–67. DOI: https://doi.org/10.1016/j.enconman.2016.01.065.

    Article  Google Scholar 

  63. TWAHA S, ZHU Jie, YAN Yu-ying, et al. A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement [J]. Renewable and Sustainable Energy Reviews, 2016, 65: 698–726. DOI: https://doi.org/10.1016/j.rser.2016.07.034.

    Article  Google Scholar 

  64. ZHAO Xuan, HAN Wen-jia, ZHAO Chuan-shan, et al. Fabrication of transparent paper-based flexible thermoelectric generator for wearable energy harvester using modified distributor printing technology [J]. ACS Applied Materials & Interfaces, 2019, 11(10): 10301–10309. DOI: https://doi.org/10.1021/acsami.8b21716.

    Article  Google Scholar 

  65. CHANG P S, LIAO C N. Screen-printed flexible thermoelectric generator with directional heat collection design [J]. Journal of Alloys and Compounds, 2020, 836: 155471. DOI: https://doi.org/10.1016/j.jallcom.2020.155471.

    Article  Google Scholar 

  66. MADAN D, WANG Zuo-qian, CHEN A, et al. Dispenser printed circular thermoelectric devices using Bi and Bi0.5Sb1.5Te3 [J]. Applied Physics Letters, 2014, 104(1): 013902. DOI: https://doi.org/10.1063/1.4861057.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SHERCHENKOV Alexey formulated the interconnected research goals, provided the concept and edited the draft of the manuscript. VOLOSHCHUK Irina carried out the literature review, wrote the first draft of the manuscript and provided the manufacturing of suspensions and TEG fabrication. TEREKHOV Dmitry provided the measurement of thermoelectric properties and was responsible to the development of TEG. BABICH Alexey and PEREVERZEVA Svetlana investigated thermal properties and stability of the obtained materials.

Corresponding author

Correspondence to Alexey Babich.

Ethics declarations

VOLOSHCHUK Irina, BABICH Alexey, PEREVERZEVA Svetlana, TEREKHOV Dmitry and SHERCHENKOV Alexey declare that they have no conflict of interest.

Additional information

Foundation item: Projects(21-19-00312, 18-79-10231) supported by the Russian Science Foundation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voloshchuk, I., Babich, A., Pereverzeva, S. et al. Flexible thermoelectric generator fabricated by screen printing method from suspensions based on Bi2Te2.8Se0.2 and Bi0.5Sb1.5Te3. J. Cent. South Univ. 30, 2906–2918 (2023). https://doi.org/10.1007/s11771-023-5257-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5257-0

Key words

关键词

Navigation