Skip to main content
Log in

Scattering of P-wave and transient response around a fluid-filled cavity in an elastic medium

充液圆腔对平面P波的散射与围岩的瞬态响应

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The dynamic stress concentration ascribed to the scattering of dynamic disturbances encountered by different structures is an important factor affecting the damage of deep subsurface structures. To study the dynamic response around the underground fluid-filled cavity, a simplified model of the plane P-waves incident in the fluid-filled circular cavity with rock mass structure was established. Series solutions of dynamic stress concentration around the fluid-filled cavity were achieved based on the wave function expansion methods and stress boundary conditions. Using Fourier integral transformation, the expression of dynamic stress concentration factors (DSCFs) around the fluid-filled cavity subjected to transient impact was derived. Then, the relationship between DSCFs and their waveform parameters under steady-state and transient incident waves was quantitatively analyzed. In addition, a numerical model was established using the finite element numerical simulation software LS-DYNA and dynamic stress concentration and failure characteristics around the fluid-filled cavity under transient impact load were simulated. The direction of incident, Poisson ratio, time, and wavenumbers have different effects on the distribution of dynamic stress concentration around the fluid-filled circular cavity.

摘要

动力扰动在结构周围的散射所引起的动应力集中是影响深部地下结构损伤的重要因素。为了研 究地下充满流体的圆形空孔周围的动力响应,建立了无限介质中平面P 波入射充液圆腔的简化模型。 基于波函数展开法,得到充液腔周围动应力集中的解析解。利用傅里叶积分变换,推导充满流体的空 腔周围受瞬态冲击的动态应力集中因子(DSCFs)表达式。同时,定量分析稳态和瞬态入射波作用下 DSCFs 与波形参数的关系。利用有限元程序LS-DYNA建立数值模型,分析瞬态冲击载荷作用下充液 腔周围的动应力集中与围岩的破坏规律。研究表明,充液圆腔周围的动应力集中分布受到入射方向、 泊松比、时间和波数的综合影响。本研究为地下引水隧洞和油气储藏的抗震加固提供参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. SU Guo-shao, FENG Xia-ting, WANG Jin-huan, et al. Experimental study of remotely triggered rockburst induced by a tunnel axial dynamic disturbance under true-triaxial conditions [J]. Rock Mechanics and Rock Engineering, 2017, 50(8): 2207–2226. DOI: https://doi.org/10.1007/s00603-017-1218-y.

    Article  Google Scholar 

  2. XIE He-ping, ZHU Jian-bo, ZHOU Tao, et al. Novel three-dimensional rock dynamic tests using the true triaxial electromagnetic Hopkinson bar system [J]. Rock Mechanics and Rock Engineering, 2021, 54(4): 2079–2086. DOI: https://doi.org/10.1007/s00603-020-02344-4.

    Article  Google Scholar 

  3. GONG Feng-qiang, ZHONG Wen-hui, GAO Ming-zhong, et al. Dynamic characteristics of high stressed red sandstone subjected to unloading and impact loads [J]. Journal of Central South University, 2022, 29(2): 596–610. DOI: https://doi.org/10.1007/s11771-022-4944-6.

    Article  Google Scholar 

  4. SEZAWA K. Scattering of elastic waves and some applied problems [J]. Bullearthquake Resinst, 1927, 3: 19–41.

    Google Scholar 

  5. GUZ’ A N, KUBENKO V D, CHEREVKO M A. Diffraction of elastic waves [J]. Soviet Applied Mechanics, 1978, 14(8): 789–798. DOI: https://doi.org/10.1007/BF00883678.

    Article  Google Scholar 

  6. PAO Y H, MOW C C, ACHENBACH J D. Diffraction of elastic waves and dynamic stress concentrations [J]. Journal of Applied Mechanics, 1973, 40(4): 872. DOI: https://doi.org/10.1115/1.3423178.

    Article  Google Scholar 

  7. LEWIS T S, KRAFT D W, HOM N. Scattering of elastic waves by a cylindrical cavity in a solid [J]. Journal of Applied Physics, 1976, 47(5): 1795–1798. DOI: https://doi.org/10.1063/1.322894.

    Article  Google Scholar 

  8. DATTA S K, WONG K C, SHAH A H. Dynamic stresses and displacements around cylindrical cavities of arbitrary shape [J]. Journal of Applied Mechanics, 1984, 51(4): 798–803. DOI: https://doi.org/10.1115/1.3167727.

    Article  Google Scholar 

  9. TAO Ming, LI Zhan-wen, CAO Wen-zhuo, et al. Stress redistribution of dynamic loading incident with arbitrary waveform through a circular cavity [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2019, 43(6): 1279–1299. DOI: https://doi.org/10.1002/nag.2897.

    Article  Google Scholar 

  10. CHEN Zhi-gang. Dynamic response of shallow buried tunnel subjected to SH wave [J]. Advanced Materials Research, 2010, 163–167: 4265–4268. DOI: https://doi.org/10.4028/www.scientific.net/amr.163-167.4265.

    Article  Google Scholar 

  11. MIKLOWITZ B J. The theory of elastic waves and waveguides [M]. New York: North-Holland Publishing Co., 1978.

    Google Scholar 

  12. PODIL’CHUK Y N, RUBTSOV Y K. Propagation of transient elastic waves from an elliptical cavity [J]. Soviet Applied Mechanics, 1982, 18(5): 417–421. DOI: https://doi.org/10.1007/BF00883781.

    Article  MATH  Google Scholar 

  13. YANG Jia-cai, LIU Ke-wei, LI Xu-dong, et al. Stress initialization methods for dynamic numerical simulation of rock mass with high in situ stress [J]. Journal of Central South University, 2020, 27(10): 3149–3162. DOI: https://doi.org/10.1007/s11771-020-4535-3.

    Article  Google Scholar 

  14. TAO Ming, ZHAO Rui, DU Kun, et al. Dynamic stress concentration and failure characteristics around elliptical cavity subjected to impact loading [J]. International Journal of Solids and Structures, 2020, 191–192: 401–417. DOI: https://doi.org/10.1016/j.ijsolstr.2020.01.009.

    Article  Google Scholar 

  15. TAO M, ZHAO H T, LI Z W, et al. Analytical and numerical study of a circular cavity subjected to plane and cylindrical P-wave scattering [J]. Tunnelling and Underground Space Technology, 2020, 95: 103143. DOI: https://doi.org/10.1016/j.tust.2019.103143.

    Article  Google Scholar 

  16. ZHAO Rui, TAO Ming, ZHAO Hua-tao, et al. Dynamics fracture characteristics of cylindrically-bored granodiorite rocks under different hole size and initial stress state [J]. Theoretical and Applied Fracture Mechanics, 2020, 109: 102702. DOI: https://doi.org/10.1016/j.tafmec.2020.102702.

    Article  Google Scholar 

  17. ZHU Jian-bo, LI Ya-shi, WU Shi-yong, et al. Decoupled explosion in an underground opening and dynamic responses of surrounding rock masses and structures and induced ground motions: A FEM-DEM numerical study [J]. Tunnelling and Underground Space Technology, 2018, 82: 442–454. DOI: https://doi.org/10.1016/j.tust.2018.08.057.

    Article  Google Scholar 

  18. LI Xi-bing, LI Chong-jin, CAO Wen-zhuo, et al. Dynamic stress concentration and energy evolution of deep-buried tunnels under blasting loads [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 104: 131–146. DOI: https://doi.org/10.1016/j.ijrmms.2018.02.018.

    Article  Google Scholar 

  19. WU Xing-yu, JIANG Li-shuai, XU Xing-gang, et al. Numerical analysis of deformation and failure characteristics of deep roadway surrounding rock under static-dynamic coupling stress [J]. Journal of Central South University, 2021, 28(2): 543–555. DOI: https://doi.org/10.1007/s11771-021-4620-2.

    Article  Google Scholar 

  20. SCHWARTZ B L, LIU Yi-fei, ROYSTON T J, et al. Axisymmetric diffraction of a cylindrical transverse wave by a viscoelastic spherical inclusion [J]. Journal of Sound and Vibration, 2016, 364: 222–233. DOI: https://doi.org/10.1016/j.jsv.2015.11.023.

    Article  Google Scholar 

  21. QIAO Song, SHANG Xin-chun. General three-dimensional scattering and dynamic stress concentration of Lamb-like waves in a spherical shell with a spherical inclusion [J]. Archive of Applied Mechanics, 2017, 87(7): 1165–1198. DOI: https://doi.org/10.1007/s00419-017-1240-2.

    Article  Google Scholar 

  22. HEI Bao-ping, YANG Zai-lin, SUN Bai-tao, et al. Modelling and analysis of the dynamic behavior of inhomogeneous continuum containing a circular inclusion [J]. Applied Mathematical Modelling, 2015, 39(23–24): 7364–7374. DOI: https://doi.org/10.1016/j.apm.2015.03.015.

    Article  MathSciNet  MATH  Google Scholar 

  23. KARINSKI Y S, FELDGUN V R, YANKELEVSKY D Z. Shock waves interaction with a single inclusion buried in soil [J]. International Journal of Impact Engineering, 2012, 45: 60–73. DOI: https://doi.org/10.1016/j.ijimpeng.2012.01.008.

    Article  Google Scholar 

  24. SHINDO Y, NAKAMURA T, NARITA F. The application of the boundary element method to the problem of wave diffraction from a diamond shaped inclusion [J]. The Open Mechanics Journal, 2008, 2(1): 62–66. DOI: https://doi.org/10.2174/1874158400802010062.

    Article  Google Scholar 

  25. WANG Zhong-chang, LI Bo. Stability analysis of slope and diversion water tunnel of hydropower station under strong earthquake [J]. Geotechnical and Geological Engineering, 2021, 39(3): 2041–2049. DOI: https://doi.org/10.1007/s10706-020-01605-x.

    Article  Google Scholar 

  26. WU Hui-jun, WANG Zhong-chang. The stability analysis of lining structure of water diversion tunnel of hydropower in strong earthquake area [J]. Geotechnical and Geological Engineering, 2019, 37(1): 155–161. DOI: https://doi.org/10.1007/s10706-018-0599-3.

    Article  Google Scholar 

  27. EINSPRUCH N G, TRUELL R. Scattering of a plane longitudinal wave by a spherical fluid obstacle in an elastic medium [J]. The Journal of the Acoustical Society of America, 1960, 32(2): 214–220. DOI: https://doi.org/10.1121/1.1908017.

    Article  MathSciNet  MATH  Google Scholar 

  28. GAUNAURD G C, ÜBERALL H. Numerical evaluation of modal resonances in the echoes of compressional waves scattered from fluid-filled spherical cavities in solids [J]. Journal of Applied Physics, 1979, 50(7): 4642–4660. DOI: https://doi.org/10.1063/1.326574.

    Article  Google Scholar 

  29. LI Wei-hua, ZHAO Cheng-gang. An analytical solution for the diffraction of plane P waves by circular cylindrical canyons in a fluid-saturated porous media half space [J]. Chinese Journal of Geophysics, 2003, 46(4): 769–780. DOI: https://doi.org/10.1002/cjg2.3396.

    Article  Google Scholar 

  30. LIU Zhong-xian, JU Xin, WU Cheng-qing, et al. Scattering of plane P1 waves and dynamic stress concentration by a lined tunnel in a fluid-saturated poroelastic half-space [J]. Tunnelling and Underground Space Technology, 2017, 67: 71–84. DOI: https://doi.org/10.1016/j.tust.2017.04.017.

    Article  Google Scholar 

  31. BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. low-frequency range [J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168–178. DOI: https://doi.org/10.1121/1.1908239.

    Article  MathSciNet  Google Scholar 

  32. BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. II. higher frequency range [J]. The Journal of the Acoustical Society of America, 1956, 28(2): 179–191. DOI: https://doi.org/10.1121/1.1908241.

    Article  MathSciNet  Google Scholar 

  33. FANG Xue-qian, YANG Shao-pu, LIU Jin-xi, et al. Dynamic interaction between two fluid-filled circular pipelines in saturated poroelastic medium subjected to harmonic waves [J]. Journal of Pressure Vessel Technology, 2015, 137(1): 011305. DOI: https://doi.org/10.1115/1.4027244.

    Article  Google Scholar 

  34. PAO Y H. Dynamical stress concentration in an elastic plate [J]. Journal of Applied Mechanics, 1962, 29(2): 299–305. DOI: https://doi.org/10.1115/1.3640545.

    Article  MATH  Google Scholar 

  35. TAO Ming, MA Ao, CAO Wen-zhuo, et al. Dynamic response of pre-stressed rock with a circular cavity subject to transient loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2017, 99: 1–8. DOI: https://doi.org/10.1016/j.ijrmms.2017.09.003.

    Article  Google Scholar 

  36. TAO Ming, LI Xi-bing, WU Cheng-qing. Characteristics of the unloading process of rocks under high initial stress [J]. Computers and Geotechnics, 2012, 45: 83–92. DOI: https://doi.org/10.1016/j.compgeo.2012.05.002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TAO Ming provided the concept and edited the draft of the manuscript. XIANG Gong-liang conducted the theoretical analysis and wrote the initial draft of the manuscript. ZHAO Rui and WU Cheng-qing solved the equation. All authors responded to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Ming Tao  (陶明).

Additional information

Conflict of interest

TAO Ming, XIANG Gong-liang, ZHAO Rui and WU Cheng-qing declare that they have no conflict of interest.

Foundation item: Project(12072376) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, M., Xiang, Gl., Zhao, R. et al. Scattering of P-wave and transient response around a fluid-filled cavity in an elastic medium. J. Cent. South Univ. 30, 568–583 (2023). https://doi.org/10.1007/s11771-023-5255-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5255-2

Key words

关键词

Navigation