Skip to main content
Log in

Waveform recognition and process interpretation of microseismic monitoring based on an improved LeNet5 convolutional neural network

基于改进LeNet5卷积神经网络的微震监测波形识别与过程解释

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The development of high-precision and interpretable automatic waveform classification algorithms with strong adaptability is becoming increasingly significant under the background of the big data era of microseismicity. Considering the deficiency of the existing network in waveform recognition and classification, an improved model which is suitable for microseismic (MS) monitoring waveform recognition was proposed in this study based on the LeNet framework. The improved model was applied to investigate thirteen kinds of MS monitoring signals that appear within 8 months of the Hanjiang-to-Weihe River Diversion Project. The results show that the accuracy of the best framework in the improved model is 0.98, which is 0.1 higher than original model. The average precision, recall and F1 values of all improved models increased by 0.11, 0.12 and 0.12, respectively. Meanwhile, the improved model can visualize the entire waveform recognition process. A novel observation is that in some signal categories, the improved model mainly classified by focusing on the background information instead of the waveforms. It provides a reference for the intelligent classification of signals in MS monitoring engineering.

摘要

在微震大数据时代背景下, 开发高精度、可解释、适应性强的波形自动分类算法变得越来越重要。针对现有网络波形识别和分类的不足, 基于LeNet 框架提出了一种适用于微震监测波形识别的改进模型。应用改进后的模型对引汉济渭工程8 个月内出现的13 种微震监测信号进行了研究。结果表明, 改进模型中最佳框架的精度为0.98, 比原模型提高了0.10。所有改进模型的平均精确度、召回率和F1值分别提高了0.11、0.12 和0.12。同时, 改进后的模型可以对整个波形的识别过程可视化。在某些信号类别中, 改进的模型主要通过关注背景信息而不是波形来分类, 为微震监测工程中信号的智能分类提供了参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. CHEN Shao-jie, FENG Fan, WANG Ya-jun, et al. Tunnel failure in hard rock with multiple weak planes due to excavation unloading of in situ stress [J]. Journal of Central South University, 2020, 27(10): 2864–2882. DOI: https://doi.org/10.1007/s11771-020-4515-7.

    Article  Google Scholar 

  2. LI Xue-long, CHEN Shao-jie, LIU Shu-min, et al. AE waveform characteristics of rock mass under uniaxial loading based on Hilbert-Huang transform [J]. Journal of Central South University, 2021, 28(6): 1843–1856. DOI: https://doi.org/10.1007/s11771-021-4734-6.

    Article  Google Scholar 

  3. LI Xue-long, CHEN Shao-jie, WANG En-yuan, et al. Rockburst mechanism in coal rock with structural surface and the microseismic (MS) and electromagnetic radiation (EMR) response [J]. Engineering Failure Analysis, 2021, 124: 105396. DOI: https://doi.org/10.1016/j.engfailanal.2021.105396.

    Article  Google Scholar 

  4. LIU Jian-po, SI Ying-tao, WEI Deng-cheng, et al. Developments and prospects of microseismic monitoring technology in underground metal mines in China [J]. Journal of Central South University, 2021, 28(10): 3074–3098. DOI: https://doi.org/10.1007/s11771-021-4839-y.

    Article  Google Scholar 

  5. GONG Feng-qiang, WANG Yun-liang, LUO Song. Rockburst proneness criteria for rock materials: Review and new insights [J]. Journal of Central South University, 2020, 27(10): 2793–2821. DOI: https://doi.org/10.1007/s11771-020-4511-y.

    Article  Google Scholar 

  6. LI Peng-xiang, FENG Xia-ting, FENG Guang-liang, et al. Rockburst and microseismic characteristics around lithological interfaces under different excavation directions in deep tunnels [J]. Engineering Geology, 2019, 260: 105209. DOI: https://doi.org/10.1016/j.enggeo.2019.105209.

    Article  Google Scholar 

  7. LIU Jian-po, FENG Xia-ting, LI Yuan-hui, et al. Studies on temporal and spatial variation of microseismic activities in a deep metal mine [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 171–179. DOI: https://doi.org/10.1016/j.ijrmms.2012.12.022.

    Article  Google Scholar 

  8. TANG Shi-bin, DONG Zhuo, WANG Jia-xu, et al. A numerical study of fracture initiation under different loads during hydraulic fracturing [J]. Journal of Central South University, 2020, 27(12): 3875–3887. DOI: https://doi.org/10.1007/s11771-020-4470-3.

    Article  Google Scholar 

  9. LIU Fei, MA Tian-hui, TANG Chun-an, et al. Prediction of rockburst in tunnels at the Jinping II hydropower station using microseismic monitoring technique [J]. Tunnelling and Underground Space Technology, 2018, 81: 480–493. DOI: https://doi.org/10.1016/j.tust.2018.08.010.

    Article  Google Scholar 

  10. MA T H, TANG C A, TANG L X, et al. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station [J]. Tunnelling and Underground Space Technology, 2015, 49: 345–368. DOI: https://doi.org/10.1016/j.tust.2015.04.016.

    Article  Google Scholar 

  11. DONG Long-jun, TANG Zheng, LI Xi-bing, et al. Discrimination of mining microseismic events and blasts using convolutional neural networks and original waveform [J]. Journal of Central South University, 2020, 27(10): 3078–3089. DOI: https://doi.org/10.1007/s11771-020-4530-8.

    Article  Google Scholar 

  12. PHOON K K, ZHANG Wen-gang. Future of machine learning in geotechnics [J]. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 2022: 1–16. DOI: https://doi.org/10.1080/17499518.2022.2087884.

  13. ZHANG Wen-gang, GU Xin, TANG Li-bin, et al. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: Comprehensive review and future challenge [J]. Gondwana Research, 2022, 109: 1–17. DOI: https://doi.org/10.1016/j.gr.2022.03.015.

    Article  Google Scholar 

  14. ZHANG Wen-gang, LI Hong-rui, LI Yong-qin, et al. Application of deep learning algorithms in geotechnical engineering: A short critical review [J]. Artificial Intelligence Review, 2021, 54(8): 5633–5673. DOI: https://doi.org/10.1007/s10462-021-09967-1.

    Article  Google Scholar 

  15. ZHANG Wen-gang, PHOON K K. Editorial for Advances and applications of deep learning and soft computing in geotechnical underground engineering [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(3): 671–673. DOI: https://doi.org/10.1016/j.jrmge.2022.01.001.

    Article  Google Scholar 

  16. VALLEJOS J A, MCKINNON S D. Logistic regression and neural network classification of seismic records [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 62: 86–95. DOI: https://doi.org/10.1016/j.ijrmms.2013.04.005.

    Article  Google Scholar 

  17. DONG Long-jun, WESSELOO J, POTVIN Y, et al. Discrimination of mine seismic events and blasts using the fisher classifier, naive Bayesian classifier and logistic regression [J]. Rock Mechanics and Rock Engineering, 2016, 49(1): 183–211. DOI: https://doi.org/10.1007/s00603-015-0733-y.

    Article  Google Scholar 

  18. MALOVICHKO D. Discrimination of blasts in mine seismology [C]//Proceedings of the Sixth International Seminar on Deep and High Stress Mining. Perth: Australian Centre for Geomechanics, 2012: 161–171. DOI: https://doi.org/10.36487/acg_rep/1201_11_malovichko.

    Google Scholar 

  19. SHANG Xue-yi, LI Xi-bing, MORALES-ESTEBAN A, et al. Improving microseismic event and quarry blast classification using artificial neural networks based on principal component analysis [J]. Soil Dynamics and Earthquake Engineering, 2017, 99: 142–149. DOI: https://doi.org/10.1016/j.soildyn.2017.05.008.

    Article  Google Scholar 

  20. PU Yuan-yuan, APEL D B, HALL R. Using machine learning approach for microseismic events recognition in underground excavations: Comparison of ten frequently-used models [J]. Engineering Geology, 2020, 268: 105519. DOI: https://doi.org/10.1016/j.enggeo.2020.105519.

    Article  Google Scholar 

  21. FENG Guang-liang, CHEN Bing-rui, JIANG Quan, et al. Excavation-induced microseismicity and rockburst occurrence: Similarities and differences between deep parallel tunnels with alternating soft-hard strata [J]. Journal of Central South University, 2021, 28(2): 582–594. DOI: https://doi.org/10.1007/s11771-021-4623-z.

    Article  Google Scholar 

  22. LI Xue-long, LI Zhong-hui, WANG En-yuan, et al. Pattern recognition of mine microseismic and blasting events based on wave fractal features [J]. Fractals, 2018, 26(3): 1850029. DOI: https://doi.org/10.1142/s0218348x18500299.

    Article  Google Scholar 

  23. LI Xue-long, LI Zhong-hui, WANG En-yuan, et al. Analysis of natural mineral earthquake and blast based on Hilbert-Huang transform (HHT) [J]. Journal of Applied Geophysics, 2016, 128: 79–86. DOI: https://doi.org/10.1016/j.jappgeo.2016.03.024.

    Article  Google Scholar 

  24. MOUSAVI S M, ZHU Wei-qiang, SHENG Yi-xiao, et al. CRED: A deep residual network of convolutional and recurrent units for earthquake signal detection [J]. Scientific Reports, 2019, 9(1): 1–14. DOI: https://doi.org/10.1038/s41598-019-45748-1.

    Article  Google Scholar 

  25. ZHAO Guo-yan, MA Ju, DONG Long-jun, et al. Classification of mine blasts and microseismic events using starting-up features in seismograms [J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10): 3410–3420. DOI: https://doi.org/10.1016/S1003-6326(15)63976-0.

    Article  Google Scholar 

  26. ZHAO Zheng-guang, GROSS L. Using supervised machine learning to distinguish microseismic from noise events [C]//SEG Technical Program Expanded Abstracts. Houston, Texas: Society of Exploration Geophysicists, 2017: 2918–2923. DOI: https://doi.org/10.1190/segam2017-17727697.1.

  27. TARY J B, HERRERA R H, HAN Jia-jun, et al. Spectral estimation-What is new? What is next? [J]. Reviews of Geophysics, 2014, 52(4): 723–749. DOI: https://doi.org/10.1002/2014rg000461.

    Article  Google Scholar 

  28. WILKINS A H, STRANGE A, DUAN Yi, et al. Identifying microseismic events in a mining scenario using a convolutional neural network [J]. Computers & Geosciences, 2020, 137: 104418. DOI: https://doi.org/10.1016/j.cageo.2020.104418.

    Article  Google Scholar 

  29. BI Lin, XIE Wei, ZHAO Jun-jie. Automatic recognition and classification of multi-channel microseismic waveform based on DCNN and SVM [J]. Computers & Geosciences, 2019, 123: 111–120. DOI: https://doi.org/10.1016/j.cageo.2018.10.008.

    Article  Google Scholar 

  30. BI Xin, ZHANG Chao, HE Yao, et al. Explainable time — frequency convolutional neural network for microseismic waveform classification [J]. Information Sciences, 2021, 546: 883–896. DOI: https://doi.org/10.1016/j.ins.2020.08.109.

    Article  MathSciNet  MATH  Google Scholar 

  31. WANG Guan, GONG Jun. Facial expression recognition based on improved LeNet-5 CNN [C]//2019 Chinese Control and Decision Conference (CCDC). Nanchang, China: IEEE, 2019: 5655–5660. DOI: https://doi.org/10.1109/CCDC.2019.8832535.

    Google Scholar 

  32. ZHANG Chuan-wei, YANG Meng-yue, ZENG Hong-jun, et al. Pedestrian detection based on improved LeNet-5 convolutional neural network [J]. Journal of Algorithms & Computational Technology, 2019, 13: 174830261987360. DOI: https://doi.org/10.1177/1748302619873601.

    Article  Google Scholar 

  33. LIANG Zheng-zhao, XUE Rui-xiong, XU Nu-wen, et al. Analysis on microseismic characteristics and stability of the access tunnel in the main powerhouse, Shuangjiangkou hydropower station, under high in situ stress [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(6): 3231–3244. DOI: https://doi.org/10.1007/s10064-020-01738-6.

    Article  Google Scholar 

  34. LIU Zi-hao, JIA Xiao-jun, XU Xin-sheng. Study of shrimp recognition methods using smart networks [J]. Computers and Electronics in Agriculture, 2019, 165: 104926. DOI: https://doi.org/10.1016/j.compag.2019.104926.

    Article  Google Scholar 

  35. LI Tai-hao, JIN Di, DU Cui-fen, et al. The image-based analysis and classification of urine sediments using a LeNet-5 neural network [J]. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization, 2020, 8(1): 109–114. DOI: https://doi.org/10.1080/21681163.2019.1608307.

    Google Scholar 

  36. ZHAO Xin-zhuo, LIU Li-yao, QI Shou-liang, et al. Agile convolutional neural network for pulmonary nodule classification using CT images [J]. International Journal of Computer Assisted Radiology and Surgery, 2018, 13(4): 585–595. DOI: https://doi.org/10.1007/s11548-017-1696-0.

    Article  Google Scholar 

  37. DEL GAUDIO V, MUSCILLO S, WASOWSKI J. What we can learn about slope response to earthquakes from ambient noise analysis: An overview [J]. Engineering Geology, 2014, 182: 182–200. DOI: https://doi.org/10.1016/j.enggeo.2014.05.010.

    Article  Google Scholar 

  38. LI Jia-ming, TANG Shi-bin, LI Kun-yao, et al. Automatic recognition and classification of microseismic waveforms based on computer vision [J]. Tunnelling and Underground Space Technology, 2022, 121: 104327. DOI: https://doi.org/10.1016/j.tust.2021.104327.

    Article  Google Scholar 

  39. LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition [J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. DOI: https://doi.org/10.1109/5.726791.

    Article  Google Scholar 

  40. LIN Min, CHEN Qiang, YAN Shui-cheng. Network in network [J]. Computer Science, 2013. DOI: https://doi.org/10.48550/arXiv.1312.4400.

  41. IOFFE S, SZEGEDY C. Batch normalization: Accelerating deep network training by reducing internal covariate shift [C]//Proceedings of the 32nd International Conference on International Conference on Machine Learning — Volume 37. New York: ACM, 2015: 448–456.

    Google Scholar 

  42. HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. DOI: https://doi.org/10.1109/TPAMI.2019.2913372.

    Article  Google Scholar 

  43. FABIJAŃSKA A, DANEK M, BARNIAK J. Wood species automatic identification from wood core images with a residual convolutional neural network [J]. Computers and Electronics in Agriculture, 2021, 181: 105941. DOI: https://doi.org/10.1016/j.compag.2020.105941.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-bin Tang  (唐世斌).

Additional information

Contributors

LI Jia-ming wrote the manuscript. TANG Shi-bin provided suggestions for the research method and revised the article completely. WENG Fang-wen and LI Kun-yao calculated and analyzed the signal data. YAO Hua-wei and HE Qing-yuan processed the basic data.

Foundation item

Projects(51874065, U1903112, 41941018) supported by the National Natural Science Foundation of China

Conflict of interest

LI Jia-ming, TANG Shi-bin, WENG Fang-wen, LI Kun-yao, YAO Hua-wei and HE Qing-yuan declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Jm., Tang, Sb., Weng, Fw. et al. Waveform recognition and process interpretation of microseismic monitoring based on an improved LeNet5 convolutional neural network. J. Cent. South Univ. 30, 904–918 (2023). https://doi.org/10.1007/s11771-023-5254-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5254-3

Key words

关键词

Navigation