Skip to main content
Log in

Process and mechanism investigation on comprehensive utilization of arsenic-alkali residue

砷碱渣综合利用工艺及机理研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Arsenic-alkali residue is a solid waste produced by the antimony smelting industry, which can pose a threat to the environment and human health. The common wet treatment process of arsenic-alkali residue has a low recovery of valuable elements, incomplete separation of arsenic and alkali, and also produces arsenic-alkali mixed salt, which cannot realize the completely harmless treatment of arsenic-alkali residue. In order to solve these problems, the oxidative water leaching process was used to treat arsenic-alkali residue, which realized the separation of arsenic and antimony. The leaching efficiencies of arsenic and antimony were 91.79% and 0.62%, respectively. The leaching residue could be returned to the antimony smelting system to recover antimony. Then the arsenic and alkali were directly separated from the arsenic-alkali mixed salt by carbothermal reduction, and 98.3% of arsenic was removed, and the non-toxic metallic arsenic with 99.9% purity was prepared. The alkali could be recovered from the slag after reduction, which solved the problem of harmless and recycling treatment of arsenic-alkali mixed salts. The mechanism of arsenic reduction pathway was studied through thermodynamic, phase, and arsenic valence state analyses.

摘要

砷碱渣是锑冶炼行业产生的固体废渣, 对环境和人体健康构成严重威胁。目前, 常见的砷碱渣湿法处理工艺不仅有价元素回收率低、砷碱分离不完全, 还会产生砷碱混合盐, 无法实现砷碱渣完全无害化处理。为解决这些问题, 本文采用氧化水浸处理砷碱渣, 实现了砷和锑的分离, 砷、锑的浸出率分别为91.79% 和0.62%, 浸出渣可返回锑冶炼系统回收锑。通过碳热还原直接从砷碱混合盐(砷碱液蒸发结晶产物)中分离砷和碱, 98.3% 的砷可被脱除并制备成具有商业价值的无毒高纯金属砷, 纯度达到99.9%; 碱可从还原后渣中实现回收, 良好地实现了砷碱混合盐的无害化和资源化处理。通过热力学、物相和砷价态分析研究了砷还原路径及挥发机理。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Reference

  1. ZHAO Tian-cong. Antimony [M]. Beijing: Metallurgical Industry Press, 1987. (in Chinese)

    Google Scholar 

  2. JIANG Guang-hua, MIN Xiao-bo, KE Yong, et al. Solidification/stabilization of highly toxic arsenic-alkali residue by MSWI fly ash-based cementitious material containing Friedel’s salt: Efficiency and mechanism [J]. Journal of Hazardous Materials, 2022, 425: 127992. DOI: https://doi.org/10.1016/j.jhazmat.2021.127992.

    Article  Google Scholar 

  3. WANG Dan-yang, REPO E, HE Fang-shu, et al. Dual functional sites strategies toward enhanced heavy metal remediation: Interlayer expanded Mg-Al layered double hydroxide by intercalation with L [J]. Journal of Hazardous Materials, 2022, 439: 129693. DOI: https://doi.org/10.1016/j.jhazmat.2022.129693.

    Article  Google Scholar 

  4. CHAI Fei, ZHANG Rui, MIN Xiao-bo, et al. Highly efficient removal of arsenic (III/V) from groundwater using nZVI functionalized cellulose nanocrystals fabricated via a bioinspired strategy [J]. Science of the Total Environment, 2022, 842: 156937. DOI: https://doi.org/10.1016/j.scitotenv.2022.156937.

    Article  Google Scholar 

  5. HE Meng-chang, WANG Xiang-qin, WU Feng-chang, et al. Antimony pollution in China [J]. Science of the Total Environment, 2012, 421–422: 41–50. DOI: https://doi.org/10.1016/j.scitotenv.2011.06.009.

    Article  Google Scholar 

  6. GUO Xue-jun, WANG Kun-peng, HE Meng-chang, et al. Antimony smelting process generating solid wastes and dust: Characterization and leaching behaviors [J]. Journal of Environmental Sciences, 2014, 26(7): 1549–1556. DOI: https://doi.org/10.1016/j.jes.2014.05.022.

    Article  Google Scholar 

  7. LI Jian-sheng, LIANG Han-qing. Treatment strategies study on the comprehensive utilization of arsenic-alkali residue in xikuangshan area [J]. Hunan Nonferrous Metals, 2010, 26(5): 53–55, 76. (in Chinese)

    Google Scholar 

  8. LONG Hua, HUANG Xing-zhong, ZHENG Ya-jie, et al. Purification of crude As2O3 recovered from antimony smelting arsenic-alkali residue [J]. Process Safety and Environmental Protection, 2020, 139: 201–209. DOI: https://doi.org/10.1016/j.psep.2020.04.015.

    Article  Google Scholar 

  9. CHEN Cheng-hao, LAI Min, FANG Feng-zhou. Study on the crack formation mechanism in nano-cutting of gallium arsenide [J]. Applied Surface Science, 2021, 540: 148322. DOI: https://doi.org/10.1016/j.apsusc.2020.148322.

    Article  Google Scholar 

  10. WANG Cai-li, WANG Dong, YANG Run-quan, et al. Preparation and electrical properties of wollastonite coated with antimony-doped tin oxide nanoparticles [J]. Powder Technology, 2019, 342: 397–403. DOI: https://doi.org/10.1016/j.powtec.2018.09.092.

    Article  Google Scholar 

  11. TANG Guo-wu, LIU Wang-wang, QIAN Qi, et al. Antimony selenide core fibers [J]. Journal of Alloys and Compounds, 2017, 694: 497–501. DOI: https://doi.org/10.1016/j.jallcom.2016.10.043.

    Article  Google Scholar 

  12. LI Lei, ZHANG Ren-jie, LIAO Bin, et al. Separation of As from As and Sb contained smoke dust by selective oxidation [J]. The Chinese Journal of Process Engineering, 2014, 14(1): 71–77. (in Chinese)

    Google Scholar 

  13. ZHANG Nan, FANG Zi-wei, LONG Hua, et al. Stabilization of arsenic from arsenic alkali residue by forming crystalline scorodite [J]. The Chinese Journal of Nonferrous Metals, 2020, 30(1): 203–213. (in Chinese)

    Google Scholar 

  14. TIAN Jia, SUN Wei, ZHANG Xing-fei, et al. Comprehensive utilization and safe disposal of hazardous arsenic-alkali slag by the combination of beneficiation and metallurgy [J]. Journal of Cleaner Production, 2021, 295: 126381. DOI: https://doi.org/10.1016/j.jclepro.2021.126381.

    Article  Google Scholar 

  15. ZHANG Wen-juan, CHE Jian-yong, XIA Liu, et al. Efficient removal and recovery of arsenic from copper smelting flue dust by a roasting method: Process optimization, phase transformation and mechanism investigation [J]. Journal of Hazardous Materials, 2021, 412: 125232. DOI: https://doi.org/10.1016/j.jhazmat.2021.125232.

    Article  Google Scholar 

  16. XUE Jian-rong, LONG Dong-ping, ZHONG Hong, et al. Comprehensive recovery of arsenic and antimony from arsenic-rich copper smelter dust [J]. Journal of Hazardous Materials, 2021, 413: 125365. DOI: https://doi.org/10.1016/j.jhazmat.2021.125365.

    Article  Google Scholar 

  17. ZHANG Yu-hui, FENG Xiao-yan, QIAN Long, et al. Separation of arsenic and extraction of zinc and copper from high-arsenic copper smelting dusts by alkali leaching followed by sulfuric acid leaching [J]. Journal of Environmental Chemical Engineering, 2021, 9(5): 105997. DOI: https://doi.org/10.1016/j.jece.2021.105997.

    Article  Google Scholar 

  18. WANG Xin, DING Jia-qi, WANG Lin-ling, et al. Stabilization treatment of arsenic-alkali residue (AAR): Effect of the coexisting soluble carbonate on arsenic stabilization [J]. Environment International, 2020, 135: 105406. DOI: https://doi.org/10.1016/j.envint.2019.105406.

    Article  Google Scholar 

  19. COUSSY S, PAKTUNC D, ROSE J, et al. Arsenic speciation in cemented paste backfills and synthetic calcium-silicate-hydrates [J]. Minerals Engineering, 2012, 39: 51–61. DOI: https://doi.org/10.1016/j.mineng.2012.05.016.

    Article  Google Scholar 

  20. LIANG Yan-jie, MIN Xiao-bo, CHAI Li-yuan, et al. Stabilization of arsenic sludge with mechanochemically modified zero valent iron [J]. Chemosphere, 2017, 168:1142–1151. DOI: https://doi.org/10.1016/j.chemosphere.2016.10.087.

    Article  Google Scholar 

  21. JIANG Guang-hua, MIN Xiao-bo, KE Yong, et al. Solidification/stabilization of highly toxic arsenic-alkali residue by MSWI fly ash-based cementitious material containing Friedel’s salt: Efficiency and mechanism [J]. Journal of Hazardous Materials, 2022, 425: 127992. DOI: https://doi.org/10.1016/j.jhazmat.2021.127992.

    Article  Google Scholar 

  22. TIAN Jia, WANG Yu-feng, ZHANG Xing-fei, et al. A novel scheme for safe disposal and resource utilization of arsenic-alkali slag [J]. Process Safety and Environmental Protection, 2021, 156: 429–437. DOI: https://doi.org/10.1016/j.psep.2021.10.029.

    Article  Google Scholar 

  23. SU Rui, MA Xu, LIN Jin-ru, et al. An alternative method for the treatment of metallurgical arsenic-alkali residue and recovery of high-purity sodium bicarbonate [J]. Hydrometallurgy, 2021, 202: 105590. DOI: https://doi.org/10.1016/j.hydromet.2021.105590.

    Article  Google Scholar 

  24. LONG Hua, ZHENG Ya-jie, PENG Ying-lin, et al. Separation and recovery of arsenic and alkali products during the treatment of antimony smelting residues [J]. Minerals Engineering, 2020, 153: 106379. DOI: https://doi.org/10.1016/j.mineng.2020.106379.

    Article  Google Scholar 

  25. LONG Hua, ZHENG Ya-jie, PENG Ying-lin, et al. Recovery of alkali, selenium and arsenic from antimony smelting arsenic-alkali residue [J]. Journal of Cleaner Production, 2020, 251: 119673. DOI: https://doi.org/10.1016/j.jclepro.2019.119673.

    Article  Google Scholar 

  26. LEI Jie, PENG Bing, LIANG Yan-jie, et al. Effects of anions on calcium arsenate crystalline structure and arsenic stability [J]. Hydrometallurgy, 2018, 177: 123–131. DOI: https://doi.org/10.1016/j.hydromet.2018.03.007.

    Article  Google Scholar 

  27. ZHAO Fei-ping, CHEN Shi-xing, XIANG Hong-rui, et al. Selectively capacitive recovery of rare earth elements from aqueous solution onto Lewis base sites of pyrrolic-N doped activated carbon electrodes [J]. Carbon, 2022, 197: 282–291. DOI: https://doi.org/10.1016/j.carbon.2022.06.033.

    Article  Google Scholar 

  28. YANG Yu-dong, ZHANG Zhong-tang, LI Yu-hu, et al. The catalytic aerial oxidation of As(III) in alkaline solution by Mn-loaded diatomite [J]. Journal of Environmental Management, 2022, 317: 115380. DOI: https://doi.org/10.1016/j.jenvman.2022.115380.

    Article  Google Scholar 

  29. TIAN Lei, YU Xiao-qiang, XU Jia-cong, et al. Preparation and study of tungsten carbide catalyst synergistically codoped with Fe and nitrogen for oxygen reduction reaction [J]. Journal of Materials Research and Technology, 2021, 15: 7100–7110. DOI: https://doi.org/10.1016/j.jmrt.2021.11.134.

    Article  Google Scholar 

  30. WANG Sui-ling, MULLIGAN C N. Speciation and surface structure of inorganic arsenic in solid phases: A review [J]. Environment International, 2008, 34(6): 867–879. DOI: https://doi.org/10.1016/j.envint.2007.11.005.

    Article  Google Scholar 

  31. OUVRARD S, de DONATO P, SIMONNOT M O, et al. Natural manganese oxide: Combined analytical approach for solid characterization and arsenic retention [J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2715–2724. DOI: https://doi.org/10.1016/j.gca.2004.12.023.

    Article  Google Scholar 

  32. DU Qiong, ZHANG Shu-juan, PAN Bing-cai, et al. Bifunctional resin-ZVI composites for effective removal of arsenite through simultaneous adsorption and oxidation [J]. Water Research, 2013, 47(16): 6064–6074. DOI: https://doi.org/10.1016/j.watres.2013.07.020.

    Article  Google Scholar 

  33. BANG S, JOHNSON M D, KORFIATIS G P, et al. Chemical reactions between arsenic and zero-valent iron in water [J]. Water Research, 2005, 39(5): 763–770. DOI: https://doi.org/10.1016/j.watres.2004.12.022.

    Article  Google Scholar 

  34. ZHANG Shu-juan, LI Xiao-yan, CHEN J P. An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber [J]. Journal of Colloid and Interface Science, 2010, 343(1): 232–238. DOI: https://doi.org/10.1016/j.jcis.2009.11.001.

    Article  Google Scholar 

  35. SHAN Chao, DONG Hao, HUANG Ping, et al. Dual-functional millisphere of anion-exchanger-supported nanoceria for synergistic As(III) removal with stoichiometric H2O2: Catalytic oxidation and sorption [J]. Chemical Engineering Journal, 2019, 360: 982–989. DOI: https://doi.org/10.1016/j.cej.2018.07.051.

    Article  Google Scholar 

  36. MARTINSON C A, REDDY K J. Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles [J]. Journal of Colloid and Interface Science, 2009, 336(2): 406–411. DOI: https://doi.org/10.1016/j.jcis.2009.04.075.

    Article  Google Scholar 

  37. BAHL M K, WOODALL R O, WATSON R L, et al. Relaxation during photoemission and LMM Auger decay in arsenic and some of its compounds [J]. The Journal of Chemical Physics, 1976, 64(3): 1210–1218. DOI: https://doi.org/10.1063/1.432320.

    Article  Google Scholar 

  38. FANTAUZZI M, ATZEI D, ELSENER B, et al. XPS and XAES analysis of copper, arsenic and sulfur chemical state in enargites [J]. Surface and Interface Analysis, 2006, 38(5): 922–930. DOI: https://doi.org/10.1002/sia.2348.

    Article  Google Scholar 

  39. YANG Kang, QIN Wen-qing, LIU Wei. Extraction of metal arsenic from waste sodium arsenate by roasting with charcoal powder [J]. Metals, 2018, 8(7): 542. DOI: https://doi.org/10.3390/met8070542.

    Article  Google Scholar 

  40. YANG Kang, QIN Wen-qing, LIU Wei. Extraction of elemental arsenic and regeneration of calcium oxide from waste calcium arsenate produced from wastewater treatment [J]. Minerals Engineering, 2019, 134: 309–316. DOI: https://doi.org/10.1016/j.mineng.2019.02.022.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Tian  (田磊) or Zhi-feng Xu  (徐志峰).

Additional information

Contributors

XU Zhi-feng, WANG Rui-xiang, LI Jin-hui and TIAN Lei formulated the overall research goals and provided financial support. WU Xuan-gao and GONG Ao provided and analyzed the experimental data. GONG Ao, WU Xuan-gao and YI Qin conducted thermodynamic analysis. GONG Ao, XU Jia-cong, WEN Sheng-hui conducted the literature review. GONG Ao wrote the first draft of the manuscript. All authors responded to reviewer comments and revised the final version.

Foundation item

Project(2019YFC1907405) supported by the National Key R&D Program of China; Projects(52064021, 52074136, 51974140, 52064018) supported by the National Natural Science Foundation of China; Project(20204BCJL23031) supported by the Jiangxi Provincial Cultivation Program for Academic and Technical Leaders of Major Subjects, China; Project(20202ACB213002) supported by the Jiangxi Province Science Fund for Distinguished Young Scholars, China; Project(2019KY09) supported by the Merit-based Postdoctoral Research in Jiangxi Province, China; Project (JXUSTQJBJ2020004) supported by the Program of Qingjiang Excellent Young Talents, Jiangxi University of Science and Technology, China; Project(20212ACB204015) supported by the Key Projects of Jiangxi Key R&D Plan, China

Conflict of interest

GONG Ao, WU Xuan-gao, LI Jin-hui, WANG Rui-xiang, XU Jia-cong, WEN Sheng-hui, YI Qin, TIAN Lei, XU Zhi-feng declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, A., Wu, Xg., Li, Jh. et al. Process and mechanism investigation on comprehensive utilization of arsenic-alkali residue. J. Cent. South Univ. 30, 721–734 (2023). https://doi.org/10.1007/s11771-023-5253-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5253-4

Key words

关键词

Navigation