Skip to main content
Log in

Silica-based electrolyte regulation for stable aqueous zinc-manganese batteries

氧化硅基电解液用于稳定水系锌锰电池

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A practical Zn-MnO2 battery is still challenged by the deterioration stability under the low current density due to the activeness of water in aqueous electrolyte. Herein, we reported a novel and practical hybrid silica-based ZnSO4/MnSO4 mixed solution (Si-ZMSO) electrolyte, which obviously improved the cycle stability of Zn-MnO2 battery. The Si-ZMSO electrolyte can widen the ESW of electrolyte and restrain the side reaction of zinc anode, which can achieve a good cyclic stability over 400 h for Zn∥Zn symmetrical battery. This novel hybrid electrolyte can also stabilize the cyclic performance of Zn-MnO2 batteries compared to ZMSO electrolyte. In particular, it exhibits a good capacity retention after 200 cycles under the high cathode loading and low current density. This novel strategy is expected to advance the development of Zn-MnO2 batteries.

摘要

由于水系电解液的活泼性,水系锌锰电池在低电流密度下稳定性仍然受到挑战。本文报道了一种新型实用的氧化硅基的ZnSO4/MnSO4混合溶液电解质(Si-ZMSO),显著提高了Zn-MnO2电池体系的循环稳定性。Si-ZMSO电解液拓宽了电化学稳定窗口,同时能够抑制锌负极的副反应。因此,锌对称电池表现出了400 h 以上的良好循环稳定性。与ZnSO4/MnSO4水系电解液(ZMSO)相比,使用这种新型的混合电解质还可以提高Zn-MnO2电池的循环稳定性能。电池在高负载量和低电流密度下循环200 次后仍表现出良好的容量保持率。这种新颖的合成策略有望拓展水系锌锰电池的研究思路和发展。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. PAN Hui-lin, SHAO Yu-yan, YAN Peng-fei, et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions [J]. Nature Energy, 2016, 1: 16039. DOI: https://doi.org/10.1038/nenergy.2016.39.

    Article  Google Scholar 

  2. LIU Zhe-xuan, LUO Xiong-bin, QIN Li-ping, et al. Progress and prospect of low-temperature zinc metal batteries [J]. Advanced Powder Materials, 2022, 1(2): 100011. DOI: https://doi.org/10.1016/j.apmate.2021.10.002.

    Article  Google Scholar 

  3. LIU Zhe-xuan, LI Lan-yan, QIN Li-ping, et al. Balanced interfacial ion concentration and migration steric hindrance promoting high-efficiency deposition/dissolution battery chemistry [J]. Advanced Materials, 2022, 34(40): 2270281. DOI: https://doi.org/10.1002/adma.202270281.

    Article  Google Scholar 

  4. YU P, ZENG Y, ZHANG H, et al. Flexible Zn-ion batteries: Recent progresses and challenges [J]. Small (Weinheim an Der Bergstrasse, Germany), 2019, 15(7): e1804760. DOI: https://doi.org/10.1002/smll.201804760.

    Article  Google Scholar 

  5. WANG Fei, BORODIN O, GAO Tao, et al. Highly reversible zinc metal anode for aqueous batteries [J]. Nature Materials, 2018, 17(6): 543–549. DOI: https://doi.org/10.1038/s41563-018-0063-z.

    Article  Google Scholar 

  6. NAVEED A, YANG Hui-jun, SHAO Yu-yan, et al. A highly reversible Zn anode with intrinsically safe organic electrolyte for long-cycle-life batteries [J]. Advanced Materials (Deerfield Beach, Fla), 2019, 31(36): e1900668. DOI: https://doi.org/10.1002/adma.201900668.

    Article  Google Scholar 

  7. CHEN Yue, GUO Shan, QIN Li-ping, et al. Low current-density stable zinc-metal batteries via aqueous/organic hybrid electrolyte [J]. Batteries & Supercaps, 2022, 5(5): e202200001. DOI: https://doi.org/10.1002/batt.202200001.

    Article  Google Scholar 

  8. CAO Jin, ZHANG Dong-dong, CHANAJAREE R, et al. Stabilizing zinc anode via a chelation and desolvation electrolyte additive [J]. Advanced Powder Materials, 2022, 1(1): 100007. DOI: https://doi.org/10.1016/j.apmate.2021.09.007.

    Article  Google Scholar 

  9. DU Wen-cheng, ANG E H, YANG Yang, et al. Challenges in the material and structural design of zinc anode towards high-performance aqueous zinc-ion batteries [J]. Energy & Environmental Science, 2020, 13(10): 3330–3360. DOI: https://doi.org/10.1039/D0EE02079F.

    Article  Google Scholar 

  10. HAO Jun-nan, LI Xiao-long, ZENG Xiao-hui, et al. Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries [J]. Energy & Environmental Science, 2020, 13(11): 3917–3949. DOI: https://doi.org/10.1039/D0EE02162H.

    Article  Google Scholar 

  11. ZHANG Teng-sheng, TANG Yan, FANG Guo-zhao, et al. Electrochemical activation of manganese-based cathode in aqueous zinc-ion electrolyte [J]. Advanced Functional Materials, 2020, 30(30): 2002711. DOI: https://doi.org/10.1002/adfm.202002711.

    Article  Google Scholar 

  12. TANG Xue-kun, FENG Qi-ming, LIU Kun, et al. A simple and innovative route to remarkably enhance the photocatalytic performance of TiO2: Using micro-meso porous silica nanofibers as carrier to support highly-dispersed TiO2 nanoparticles [J]. Microporous and Mesoporous Materials, 2018, 258: 251–261. DOI: https://doi.org/10.1016/j.micromeso.2017.09.024.

    Article  Google Scholar 

  13. HUANG J, TANG X, LIU K, et al. Interfacial chemical binding and improved kinetics assisting stable aqueous Zn-MnO2 batteries [J]. Materials Today Energy, 2020, 17: 100475. DOI: https://doi.org/10.1016/j.mtener.2020.100475.

    Article  Google Scholar 

  14. LIU Kun, FENG Qi-ming, YANG Yan-xia, et al. Preparation and characterization of amorphous silica nanowires from natural chrysotile [J]. Journal of Non-Crystalline Solids, 2007, 353(16–17): 1534–1539. DOI: https://doi.org/10.1016/j.jnoncrysol.2007.01.033.

    Article  Google Scholar 

  15. KANG Li-tao, CUI Mang-wei, JIANG Fu-yi, et al. Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries [J]. Advanced Energy Materials, 2018, 8(25): 1801090. DOI: https://doi.org/10.1002/aenm.201801090.

    Article  Google Scholar 

  16. ZHAO Zhi-ming, ZHAO Jing-wen, HU Zheng-lin, et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase [J]. Energy & Environmental Science, 2019, 12(6): 1938–1949. DOI: https://doi.org/10.1039/C9EE00596J.

    Article  Google Scholar 

  17. WANG Sheng-bo, RAN Qing, YAO Rui-qi, et al. Lamella-nanostructured eutectic zinc-aluminum alloys as reversible and dendrite-free anodes for aqueous rechargeable batteries [J]. Nature Communications, 2020, 11: 1634. DOI: https://doi.org/10.1038/s41467-020-15478-4.

    Article  Google Scholar 

  18. HUANG Yong-feng, GU Qing-qing, GUO Zhang-long, et al. Unraveling dynamical behaviors of zinc metal electrodes in aqueous electrolytes through an operando study [J]. Energy Storage Materials, 2022, 46: 243–251. DOI: https://doi.org/10.1016/j.ensm.2022.01.012.

    Article  Google Scholar 

  19. LI Yang, LI Xu, DUAN Huan, et al. Aerogel-structured MnO2 cathode assembled by defect-rich ultrathin nanosheets for zinc-ion batteries [J]. Chemical Engineering Journal, 2022, 441: 136008. DOI: https://doi.org/10.1016/j.cej.2022.136008.

    Article  Google Scholar 

  20. CHEN Wen-yong, GUO Shan, QIN Li-ping, et al. Hydrogen bond-functionalized massive solvation modules stabilizing bilateral interfaces [J]. Advanced Functional Materials, 2022, 32(20): 2112609. DOI: https://doi.org/10.1002/adfm.202112609.

    Article  Google Scholar 

  21. WANG Zi-qing, ZHOU Miao, QIN Li-ping, et al. Simultaneous regulation of cations and anions in an electrolyte for high-capacity, high-stability aqueous zinc-vanadium batteries [J]. eScience, 2022, 2(2): 209–218. DOI: https://doi.org/10.1016/j.esci.2022.03.002.

    Article  Google Scholar 

  22. GUO Shan, QIN Li-ping, HU Chao, et al. Quasi-solid electrolyte design and in situ construction of dual electrolyte/electrode interphases for high-stability zinc metal battery [J]. Advanced Energy Materials, 2022, 12(25): 2200730. DOI: https://doi.org/10.1002/aenm.202200730.

    Article  Google Scholar 

  23. LI Can-peng, XIE Xue-song, LIANG Shu-quan, et al. Issues and future perspective on zinc metal anode for rechargeable aqueous zinc-ion batteries [J]. Energy & Environmental Materials, 2020, 3(2): 146–159. DOI: https://doi.org/10.1002/eem2.12067.

    Article  Google Scholar 

  24. MA Lin, SCHROEDER M A, POLLARD T P, et al. Critical factors dictating reversibility of the zinc metal anode [J]. Energy & Environmental Materials, 2020, 3(4): 516–521. DOI: https://doi.org/10.1002/eem2.12077.

    Article  Google Scholar 

  25. LIU Yi-yang, LU Xu, LAI Fei-li, et al. Rechargeable aqueous Zn-based energy storage devices [J]. Joule, 2021, 5(11): 2845–2903. DOI: https://doi.org/10.1016/j.joule.2021.10.011.

    Article  Google Scholar 

  26. HUANG Yong-feng, MOU Jian, LIU Wen-bao, et al. Novel insights into energy storage mechanism of aqueous rechargeable Zn/MnO2 batteries with participation of Mn2+ [J]. Nano-Micro Letters, 2019, 11(1): 49. DOI: https://doi.org/10.1007/s40820-019-0278-9.

    Article  Google Scholar 

  27. MATHEW V, SAMBANDAM B, KIM S, et al. Manganese and vanadium oxide cathodes for aqueous rechargeable zinc-ion batteries: A focused view on performance, mechanism, and developments [J]. ACS Energy Letters, 2020, 5(7): 2376–2400. DOI: https://doi.org/10.1021/acsenergylett.0c00740.

    Article  Google Scholar 

  28. XUE Tong, FAN Hong jin. From aqueous Zn-ion battery to Zn-MnO2 flow battery: A brief story [J]. Journal of Energy Chemistry, 2021, 54: 194–201. DOI: https://doi.org/10.1016/j.jechem.2020.05.056.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HUANG Jing and PENG Qian contributed equally to this work. HUANG Jing, LIU Kun and FANG Guo-zhao contributed to the overall idea. HUANG Jing and PENG Qian carried out the specific experiments. All authors contributed to the writing and revision.

Corresponding authors

Correspondence to Kun Liu  (刘琨) or Guo-zhao Fang  (方国赵).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Foundation item: Projects(51774330, 52072411) supported by the National Natural Science Foundation of China; Project(2015) supported by the Teacher Research Foundation of Central South University, China; Project(2022ZZTS0422) supported by the Fundamental Research Funds for the Central Universities, China; Project(2021JJ20060) supported by the Natural Science Foundation of Hunan Province, China; Project(2021RC3001) supported by the Science and Technology Innovation Program of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Peng, Q., Liu, K. et al. Silica-based electrolyte regulation for stable aqueous zinc-manganese batteries. J. Cent. South Univ. 30, 434–442 (2023). https://doi.org/10.1007/s11771-023-5228-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5228-5

Key words

关键词

Navigation