Skip to main content
Log in

Numerical investigation of friction stir welding parameters on microstructure, thermal and mechanical properties of ultrafine-grained Al-0.2 wt% Sc alloy sheet

摩擦搅拌焊参数对超细晶Al-0.2 wt% Sc 合金薄板微观组织和热力学性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this paper, the friction stir welding (FSW) of ultrafine-grained Al-Sc alloy sheets, obtained by accumulative roll bonding (ARB) method, has been simulated in order to indicate the impact of the FSW on the microstructure, thermal and mechanical properties. In addition, the effectiveness of the FSW parameters, i. e, tool rotational speed, welding speed, and tool tilt angle was investigated to achieve the optimized parameters. The numerical modelling was implemented in SYSWELD and Visual-Environment software and was validated by experimental results. The findings indicated that FSW is a beneficial process to maintain the ultrafine-grained (UFG) microstructure, having high mechanical properties in the accumulative roll bonded material. Tool rotational speed had the highest impact on thermal and mechanical properties. The highest values of the hardness and the yield strength of the Al-Sc sheets were achieved under the optimal parameters of the tool rotational speed, welding speed, and tool tilt angle of 700 r/min, 80 mm/min, and 3°, respectively.

摘要

为了研究摩擦搅拌焊参数对超细晶粒Al-Sc合金薄板微观组织、热力学性能的影响,采用累积 滚焊法(ARB)制备的超细晶粒Al-Sc 合金薄板进行了摩擦搅拌焊数值模拟。此外,研究了刀具转速、焊 接速度和刀具倾斜角等摩擦搅拌焊参数的最优条件。在SYSWELD和Visual-Environment 软件中实现了 数值模拟,并通过实验结果进行了验证。结果表明,摩擦搅拌焊是一种有利于保持超细晶(UFG)组织 的技术,并在累积滚焊材料中具有较好的力学性能。刀具转速对热性能和力学性能的影响最大。在刀 具转速为700 r/min、焊接速度为80 mm/min、刀具倾斜角度为3°时,Al-Sc 合金的硬度和抗屈强度均达 到最高。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HU Yan-ying, LIU Hui-jie, DU Shuai-shuai. Achievement of high-strength 2219 aluminum alloy joint in a broad process window by ultrasonic enhanced friction stir welding [J]. Materials Science and Engineering A, 2021, 804: 140587. DOI: https://doi.org/10.1016/j.msea.2020.140587.

    Article  Google Scholar 

  2. WANG Z W, ZHANG H, AN X H, et al. Achieving equal strength joint to parent metal in a friction stir welded ultrahigh strength quenching and partitioning steel [J]. Materials Science and Engineering A, 2020, 793: 139979. DOI: https://doi.org/10.1016/j.msea.2020.139979.

    Article  Google Scholar 

  3. BAHADOR A, UMEDA J, TSUTSUMI S, et al. Asymmetric local strain, microstructure and superelasticity of friction stir welded Nitinol alloy [J]. Materials Science and Engineering A, 2019, 767: 138344. DOI: https://doi.org/10.1016/j.msea.2019.138344.

    Article  Google Scholar 

  4. BHUSHAN R K, SHARMA D. Green welding for various similar and dissimilar metals and alloys: Present status and future possibilities [J]. Advanced Composites and Hybrid Materials, 2019, 2(3): 389–406. DOI: https://doi.org/10.1007/s42114-019-00094-8.

    Article  MathSciNet  Google Scholar 

  5. PAIDAR M, OJO O O, EZATPOUR H R, et al. Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B4C composite fabricated by accumulative roll bonding (ARB) [J]. Surface and Coatings Technology, 2019, 361: 159–169. DOI: https://doi.org/10.1016/j.surfcoat.2019.01.043.

    Article  Google Scholar 

  6. VAKILI M, BORHANI E, ASHRAFI A. Corrosion behavior of nano-/ultrafine-grained Al-0.2 wt.% Sc alloy produced by accumulative roll bonding (ARB) [J]. Journal of Materials Engineering and Performance, 2018, 27(8): 4253–4260. DOI: https://doi.org/10.1007/s11665-018-3489-1.

    Article  Google Scholar 

  7. AZAD B, SEMNANI H M, BORHANI E. The combined effect of aging and accumulative roll bonding on the evolution of the microstructure and mechanical characteristics of an Al-0.2 wt% Zr alloy [J]. Physics of Metals and Metallography, 2017, 118(1): 87–95. DOI: https://doi.org/10.1134/S0031918X16120024.

    Article  Google Scholar 

  8. VAZIRI J, JAHAN A, BORHANI E, et al. Evaluating promising applications of a new nanomaterial produced by accumulative roll bonding process: A preliminary multiple criteria decision-making approach [J]. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2019, 233(6): 1023–1032. DOI: https://doi.org/10.1177/1464420716674037.

    Article  Google Scholar 

  9. YOUSEFI MEHR V, TOROGHINEJAD M R, REZAEIAN A, et al. A texture study of nanostructured Al-Cu multi-layered composite manufactured via the accumulative roll bonding (ARB) [J]. Journal of Materials Research and Technology, 2021, 14: 2909–2919. DOI: https://doi.org/10.1016/j.jmrt.2021.08.054.

    Article  Google Scholar 

  10. ROGHANI H, BORHANI E, SHAMS S A A, et al. Effect of concurrent accumulative roll bonding (ARB) process and various heat treatment on the microstructure, texture and mechanical properties of AA1050 sheets [J]. Journal of Materials Research and Technology, 2022, 18: 1295–1306. DOI: https://doi.org/10.1016/j.jmrt.2022.03.001.

    Article  Google Scholar 

  11. DORIN T, RAMAJAYAM M, VAHID A, et al. Aluminium scandium alloys [M]//Fundamentals of Aluminium Metallurgy. Amsterdam: Elsevier, 2018: 439–494. DOI: https://doi.org/10.1016/b978-0-08-102063-0.00012-6.

    Google Scholar 

  12. YOUSEFIEH M, TAMIZIFAR M, BOUTORABI S M A, et al. Taguchi optimization on the initial thickness and pre-aging of nano-/ultrafine-grained Al-0.2 wt.% Sc alloy produced by ARB [J]. Journal of Materials Engineering and Performance, 2016, 25(10): 4239–4248. DOI: https://doi.org/10.1007/s11665-016-2273-3.

    Article  Google Scholar 

  13. SATO Y S, URATA M, KOKAWA H. Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063 [J]. Metallurgical and Materials Transactions A, 2002, 33(3): 625–635. DOI: https://doi.org/10.1007/s11661-002-0124-3.

    Article  Google Scholar 

  14. LORRAIN O, FAVIER V, ZAHROUNI H, et al. Understanding the material flow path of friction stir welding process using unthreaded tools [J]. Journal of Materials Processing Technology, 2010, 210(4): 603–609. DOI: https://doi.org/10.1016/j.jmatprotec.2009.11.005.

    Article  Google Scholar 

  15. KUNDU J, GHANGAS G, RATTAN N, et al. Effect of different parameters on heat generation and tensile strength of FSW AA5083 joint [J]. International Journal of Current Engineering and Technology, 2017, 7: 1170–1174.

    Google Scholar 

  16. CHAUHAN P, JAIN R, PAL S K, et al. Modeling of defects in friction stir welding using coupled Eulerian and Lagrangian method [J]. Journal of Manufacturing Processes, 2018, 34: 158–166. DOI: https://doi.org/10.1016/j.jmapro.2018.05.022.

    Article  Google Scholar 

  17. MANDAL S, RICE J, ELMUSTAFA A A. Experimental and numerical investigation of the plunge stage in friction stir welding [J]. Journal of Materials Processing Technology, 2008, 203(1–3): 411–419. DOI: https://doi.org/10.1016/j.jmatprotec.2007.10.067.

    Article  Google Scholar 

  18. BUFFA G, FRATINI L, SCHNEIDER M, et al. Micro and macro mechanical characterization of friction stir welded Ti-6Al-4V lap joints through experiments and numerical simulation [J]. Journal of Materials Processing Technology, 2013, 213(12): 2312–2322. DOI: https://doi.org/10.1016/j.jmatprotec.2013.07.003.

    Article  Google Scholar 

  19. FEULVARCH E, ROBIN V, BOITOUT F, et al. A 3d finite element modelling for thermofluid flow in friction stir welding [M]//Mathematical Modelling of Weld Phenomena, 2007, 8: 735–748.

    Google Scholar 

  20. JANČO R, ÉCSI L, ÉLESZTŐS P. FSW numerical simulation of aluminium plates by SYSWELD-part II [J]. Strojnícky Casopis–Journal of Mechanical Engineering, 2016, 66(2): 29–36. DOI: https://doi.org/10.1515/scjme-2016-0016.

    Article  Google Scholar 

  21. BRUCE A R, KUMAR P P, ARUL K, et al. Experimental characteristics and optimization of friction stir welded AA5052-AA6061 using RSM technique [J]. Materials Today: Proceedings, 2022, 59: 1379–1387. DOI: https://doi.org/10.1016/j.matpr.2021.12.099.

    Google Scholar 

  22. RAO J T C, HARIKIRAN V, GURUDATTA K S S, et al. Temperature and strain distribution during friction stir welding of AA6061 and AA5052 aluminum alloy using DEFORM 3D [J]. Materials Today: Proceedings, 2022, 59: 576–582. DOI: https://doi.org/10.1016/j.matpr.2021.12.085.

    Google Scholar 

  23. KUMAR K S A. Effect of tool plunge depth (TPD) on the microstructure and mechanical properties of FSW dissimilar joints reinforced with SiC nano particles [J]. Materials Today: Proceedings, 2022, 52: 355–360. DOI: https://doi.org/10.1016/j.matpr.2021.09.056.

    Google Scholar 

  24. DEWANGAN S, MAHAJAN P, GIREESH D A. Modelling and simulation of heat distribution and stress generation during friction stir welding of AA-6082 plates [J]. Materials Today: Proceedings, 2022, 62: 1446–1451. DOI: https://doi.org/10.1016/j.matpr.2022.01.300.

    Google Scholar 

  25. TOPIC I, HÖPPEL H W, GÖKEN M. Friction stir welding of accumulative roll-bonded commercial-purity aluminium AA1050 and aluminium alloy AA6016 [J]. Materials Science and Engineering A, 2009, 503(1–2): 163–166. DOI: https://doi.org/10.1016/j.msea.2007.12.057.

    Article  Google Scholar 

  26. HOSSEINI M, DANESH MANESH H. Immersed friction stir welding of ultrafine grained accumulative roll-bonded Al alloy [J]. Materials & Design, 2010, 31(10): 4786–4791. DOI: https://doi.org/10.1016/j.matdes.2010.05.007.

    Article  Google Scholar 

  27. SHAMANIAN M, MOHAMMADNEZHAD M, SZPUNAR J. Texture analysis of a friction stir welded ultrafine grained Al-Al2O3 composite produced by accumulative roll-bonding [J]. Journal of Alloys and Compounds, 2014, 615: 651–656. DOI: https://doi.org/10.1016/j.jallcom.2014.07.029.

    Article  Google Scholar 

  28. YOUSEFIEH M, TAMIZIFAR M, BOUTORABI S M A, et al. An investigation on the microstructure, texture and mechanical properties of an optimized friction stir-welded ultrafine-grained Al-0.2 wt% Sc alloy deformed by accumulative roll bonding [J]. Journal of Materials Science, 2018, 53(6): 4623–4634. DOI: https://doi.org/10.1007/s10853-017-1897-5.

    Article  Google Scholar 

  29. MORADI FARADONBEH A, SHAMANIAN M, EDRIS H, et al. Friction stir welding of Al-B4C composite fabricated by accumulative roll bonding: Evaluation of microstructure and mechanical behavior [J]. Journal of Materials Engineering and Performance, 2018, 27(2): 835–846. DOI: https://doi.org/10.1007/s11665-018-3131-2.

    Article  Google Scholar 

  30. SCHNEIDER J, COBB J, CARPENTER J S, et al. Maintaining nano-lamellar microstructure in friction stir welding (FSW) of accumulative roll bonded (ARB) Cu-Nb nano-lamellar composites (NLC) [J]. Journal of Materials Science & Technology, 2018, 34(1): 92–101. DOI: https://doi.org/10.1016/j.jmst.2017.10.016.

    Article  Google Scholar 

  31. NASERI M, ALVAND M, GHOLAMI D, et al. Friction stir welding of nano/ultrafine-grained AA2024 alloy produced through an accumulative roll bonding process [J]. MRS Communications, 2022, 12(1): 51–57. DOI: https://doi.org/10.1557/s43579-021-00139-4.

    Article  Google Scholar 

  32. ZHANG Z, ZHANG H W. Solid mechanics-based Eulerian model of friction stir welding [J]. The International Journal of Advanced Manufacturing Technology, 2014, 72(9): 1647–1653. DOI: https://doi.org/10.1007/s00170-014-5789-4.

    Article  Google Scholar 

  33. SABOONI S, KARIMZADEH F, ENAYATI M H, et al. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization [J]. Materials Characterization, 2015, 109: 138–151. DOI: https://doi.org/10.1016/j.matchar.2015.08.009.

    Article  Google Scholar 

  34. RAOUF A H, GHARIBSHAHIYAN E, GHARIBSHAHIAN M A. Numerical simulation of friction stir welding process and effect of process parameter for Al6061-T6 [C]//International Congress on Advances in Welding Science and Technology for Construction, Energy and Transportation Systems, 2011 Antalya, Turkey.

  35. NANDAN R, ROY G G, DEBROY T. Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding [J]. Metallurgical and Materials Transactions A, 2006, 37(4): 1247–1259. DOI: https://doi.org/10.1007/s11661-006-1076-9.

    Article  Google Scholar 

  36. FEULVARCH E, GOOROOCHURN Y, BOITOUT F. 3D modelling of thermofluid flow in friction stir welding [C]//Proceedings of the 7th International Conference on Trends in Welding Research, 2005, USA.

  37. MISHRA R S, MA Z Y. Friction stir welding and processing [J]. Materials Science and Engineering R: Reports, 2005, 50(1–2): 1–78. DOI: https://doi.org/10.1016/j.mser.2005.07.001.

    Article  Google Scholar 

  38. DINAHARAN I, MURUGAN N. Influence of friction stir welding parameters on sliding wear behavior of AA6061/0–10 wt.% ZrB2in situ composite butt joints [J]. Journal of Minerals and Materials Characterization and Engineering, 2011, 10(14): 1359–1377. DOI: https://doi.org/10.4236/jmmce.2011.1014107.

    Article  Google Scholar 

  39. SATO Y S, KURIHARA Y, PARK S H C, et al. Friction stir welding of ultrafine grained Al alloy 1100 produced by accumulative roll-bonding [J]. Scripta Materialia, 2004, 50(1): 57–60. DOI: https://doi.org/10.1016/j.scriptamat.2003.09.037.

    Article  Google Scholar 

  40. SATO Y S, URATA M, KURIHARA Y, et al. Microstructural evolution during friction stir welding of ultrafine grained Al alloys [J]. Materials Science Forum, 2006, 503–504: 169–174. DOI: https://doi.org/10.4028/www.scientific.net/msf.503-504.169.

    Article  Google Scholar 

  41. ZHANG Zhao, WU Qi. Numerical studies of tool diameter on strain rates, temperature rises and grain sizes in friction stir welding [J]. Journal of Mechanical Science and Technology, 2015, 29(10): 4121–4128. DOI: https://doi.org/10.1007/s12206-015-0906-3.

    Article  Google Scholar 

  42. FUJIKAWA S I. Impurity diffusion of scandium in aluminium [J]. Defect and Diffusion Forum, 1997, 143–147: 115–120. DOI: https://doi.org/10.4028/www.scientific.net/ddf.143-147.115.

    Article  Google Scholar 

  43. WANG F F, LI W Y, SHEN J, et al. Effect of tool rotational speed on the microstructure and mechanical properties of bobbin tool friction stir welding of Al-Li alloy [J]. Materials & Design, 2015, 86: 933–940. DOI: https://doi.org/10.1016/j.matdes.2015.07.096.

    Article  Google Scholar 

  44. HAMID H A D, ROSLEE A A. Study the role of friction stir welding tilt angle on microstructure and hardness [J]. Applied Mechanics and Materials, 2015, 799–800: 434–438. DOI: https://doi.org/10.4028/www.scientific.net/amm.799-800.434.

    Article  Google Scholar 

  45. LI J Y, YAO X X, ZHANG Z. Physical model based on data-driven analysis of chemical composition effects of friction stir welding [J]. Journal of Materials Engineering and Performance, 2020, 29(10): 6591–6604. DOI: https://doi.org/10.1007/s11665-020-05132-x.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Valeh TALEBSAFA, Mohammad YOUSEFIEH and Ehsan BORHANI conducted the literature review, calculated and analyzed the simulation results, and wrote the draft of the manuscript. Mohammad YOUSEFIEH and Ehsan BORHANI provided the measured experimental data, supervised the project, and conducted reviewing and editing. Ehsan GHARIBSHAHIYAN conducted reviewing and editing.

Corresponding author

Correspondence to Mohammad Yousefieh.

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebsafa, V., Yousefieh, M., Borhani, E. et al. Numerical investigation of friction stir welding parameters on microstructure, thermal and mechanical properties of ultrafine-grained Al-0.2 wt% Sc alloy sheet. J. Cent. South Univ. 30, 61–73 (2023). https://doi.org/10.1007/s11771-022-5210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5210-7

Key words

关键词

Navigation