Skip to main content
Log in

Damage characteristics of thermally treated granite under uniaxial compression: Insights from active and passive ultrasonic techniques

单轴压缩下热处理花岗岩的损伤特征:来自主/被动超声技术的见解

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To explore the effects of thermal treatment on cracking processes in granite, granite samples were thermally treated at 25–400 °C and then loaded under uniaxial compression. Active ultrasonic testing and passive acoustic emission (AE) monitoring were combined to monitor the damage characteristics of the samples. The uniaxial compression strength (UCS) of the sample treated at 200 °C shows no apparent change compared with that of the nonheated sample, while the UCS increases at 300 °C and decreases at 400 °C. As the temperature increases from 25 to 400 °C, the initial P-wave velocity (Vp) decreases gradually from 4909 to 3823 m/s, and the initial Vp anisotropy ε increases slightly from 0.03 to 0.09. As the axial stress increases, ε increases rapidly in the crack closure stage and unstable cracking stage. The attenuation of ultrasonic amplitude spectra also shows an obvious anisotropy. Besides, the main location magnitude of AE events decreases after thermal treatment, and low-frequency AE events and high-amplitude AE events increasingly occur. However, there is insufficient evidence that the treatment temperature below 400 °C has a significant effect on the temporal characteristics, source locations, and b-values of AE.

摘要

为了探明热处理对花岗岩损伤破裂的影响,对室温(25 ℃)及热处理(200,300和400 ℃)花岗岩 试样进行单轴压缩试验,并采用主动超声和被动声发射监测技术研究试样的损伤特征。研究结果表 明:与未进行热处理的试样相比,试样经200 ℃处理后单轴抗压强度(UCS)无明显变化,经300 ℃处理 后UCS增加12.65%,经400 ℃处理后UCS降低4.97%。随着热处理温度由25 ℃升至400 ℃,试样初 始P 波速度由4909 m/s 逐渐降低至3823 m/s,未加载时花岗岩试样的波速各向异性ε 由0.03 增至0.09。 随着轴向荷载增加,ε 受预存裂纹(包括热致裂纹)和应力诱发裂纹影响,在裂纹闭合阶段和不稳定开裂 阶段迅速增大。超声波主频幅值在垂直方向(轴向)随应力增大而增大,在水平方向随应力增大而减小。 此外,经热处理后试样的声发射事件定位震级减小,低频事件和高振幅事件增多。然而,没有足够的 证据表明400 ℃以下的热处理对声发射时序特征、震源位置和b 值有显著影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Ju, CHEN Liang, SU Rui, et al. The Beishan underground research laboratory for geological disposal of high-level radioactive waste in China: Planning, site selection, site characterization and in situ tests [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2018, 10(3): 411–435. DOI: https://doi.org/10.1016/j.jrmge.2018.03.002.

    Article  Google Scholar 

  2. LU S M. A global review of enhanced geothermal system (EGS) [J]. Renewable and Sustainable Energy Reviews, 2018, 81: 2902–2921. DOI: https://doi.org/10.1016/j.rser.2017.06.097.

    Article  Google Scholar 

  3. FREDRICH J T, WONG T F. Micromechanics of thermally induced cracking in three crustal rocks [J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B12): 12743–12764. DOI: https://doi.org/10.1029/jb091ib12p12743.

    Article  Google Scholar 

  4. YIN Tu-bing, LI Xi-bing, CAO Wen-zhuo, et al. Effects of thermal treatment on tensile strength of laurentian granite using Brazilian test [J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2213–2223. DOI: https://doi.org/10.1007/s00603-015-0712-3.

    Article  Google Scholar 

  5. CHAKI S, TAKARLI M, AGBODJAN W P. Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions [J]. Construction and Building Materials, 2008, 22(7): 1456–1461. DOI: https://doi.org/10.1016/j.conbuildmat.2007.04.002.

    Article  Google Scholar 

  6. CHEN Shi-wan, YANG Chun-he, WANG Gui-bin. Evolution of thermal damage and permeability of Beishan granite [J]. Applied Thermal Engineering, 2017, 110: 1533–1542. DOI: https://doi.org/10.1016/j.applthermaleng.2016.09.075.

    Article  Google Scholar 

  7. ZHANG Wei-qiang, SUN Qiang, ZHANG Yu-liang, et al. Porosity and wave velocity evolution of granite after high-temperature treatment: A review [J]. Environmental Earth Sciences, 2018, 77(9): 1–13. DOI: https://doi.org/10.1007/s12665-018-7514-3.

    Article  Google Scholar 

  8. WU Shun-chuan, GUO Pei, ZHANG Shi-huai, et al. Study on thermal damage of granite based on Brazilian splitting test [J]. Chinese Journal of Rock Mechanics and Engineering, 2018(S2): 3805–3816. (in Chinese)

  9. NASSERI M H B, TATONE B S A, GRASSELLI G, et al. Fracture toughness and fracture roughness interrelationship in thermally treated westerly granite [J]. Pure and Applied Geophysics, 2009, 166(5–7): 801–822. DOI: https://doi.org/10.1007/s00024-009-0476-3.

    Article  Google Scholar 

  10. WONG L N Y, ZHANG Ya-hui, WU Zhi-jun. Rock strengthening or weakening upon heating in the mild temperature range? [J]. Engineering Geology, 2020, 272: 105619. DOI: https://doi.org/10.1016/j.enggeo.2020.105619.

    Article  Google Scholar 

  11. YANG Sheng-qi, RANJITH P G, JING Hong-wen, et al. An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments [J]. Geothermics, 2017, 65: 180–197. DOI: https://doi.org/10.1016/j.geothermics.2016.09.008.

    Article  Google Scholar 

  12. SUN Qiang, ZHANG Wei-qiang, XUE Lei, et al. Thermal damage pattern and thresholds of granite [J]. Environmental Earth Sciences, 2015, 74(3): 2341–2349. DOI: https://doi.org/10.1007/s12665-015-4234-9.

    Article  Google Scholar 

  13. XU Xiao-li, KARAKUS M, GAO Feng, et al. Thermal damage constitutive model for rock considering damage threshold and residual strength [J]. Journal of Central South University, 2018, 25(10): 2523–2536. DOI: https://doi.org/10.1007/s11771-018-3933-2.

    Article  Google Scholar 

  14. ZUO Jian-ping, WANG Jin-tao, SUN Yun-jiang, et al. Effects of thermal treatment on fracture characteristics of granite from Beishan, a possible high-level radioactive waste disposal site in China [J]. Engineering Fracture Mechanics, 2017, 182: 425–437. DOI: https://doi.org/10.1016/j.engfracmech.2017.04.043.

    Article  Google Scholar 

  15. BERTANI R. World geothermal power generation in the period 2001–2005 [J]. Geothermics, 2005, 34(6): 651–690. DOI: https://doi.org/10.1016/j.geothermics.2005.09.005.

    Article  Google Scholar 

  16. LEI Xing-lin, MA Sheng-li. Laboratory acoustic emission study for earthquake generation process [J]. Earthquake Science, 2014, 27(6): 627–646. DOI: https://doi.org/10.1007/s11589-014-0103-y.

    Article  Google Scholar 

  17. LOCKNER D. The role of acoustic emission in the study of rock fracture [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(7): 883–899. DOI: https://doi.org/10.1016/0148-9062(93)90041-B.

    Article  Google Scholar 

  18. SU Guo-shao, GAN Wei, ZHAI Shao-bin, et al. Acoustic emission precursors of static and dynamic instability for coarse-grained hard rock [J]. Journal of Central South University, 2020, 27(10): 2883–2898. DOI: https://doi.org/10.1007/s11771-020-4516-6.

    Article  Google Scholar 

  19. ZHANG Jian-zhi, ZHOU Xiao-ping. AE event rate characteristics of flawed granite: From damage stress to ultimate failure [J]. Geophysical Journal International, 2020, 222(2): 795–814. DOI: https://doi.org/10.1093/gji/ggaa207.

    Article  Google Scholar 

  20. ZHAO X G, CAI M, WANG J, et al. Objective determination of crack initiation stress of brittle rocks under compression using AE measurement [J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2473–2484. DOI: https://doi.org/10.1007/s00603-014-0703-9.

    Article  Google Scholar 

  21. WU Chen, GONG Feng-qiang, LUO Yong. A new quantitative method to identify the crack damage stress of rock using AE detection parameters [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(1): 519–531. DOI: https://doi.org/10.1007/s10064-020-01932-6.

    Article  Google Scholar 

  22. DONG Long-jun, HU Qing-chun, TONG Xiao-jie, et al. Velocity-free MS/AE source location method for three-dimensional hole-containing structures [J]. Engineering, 2020, 6(7): 827–834. DOI: https://doi.org/10.1016/j.eng.2019.12.016.

    Article  Google Scholar 

  23. GUO Pei, WU Shun-chuan, ZHANG Guang, et al. Effects of thermally-induced cracks on acoustic emission characteristics of granite under tensile conditions [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 144: 104820. DOI: https://doi.org/10.1016/j.ijrmms.2021.104820.

    Article  Google Scholar 

  24. GOODFELLOW S D, TISATO N, GHOFRANITABARI M, et al. Attenuation properties of Fontainebleau sandstone during true-triaxial deformation using active and passive ultrasonics [J]. Rock Mechanics and Rock Engineering, 2015, 48(6): 2551–2566. DOI: https://doi.org/10.1007/s00603-015-0833-8.

    Article  Google Scholar 

  25. OHNAKA M, MOGI K. Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure [J]. Journal of Geophysical Research, 1982, 87: 3873–3884. DOI: https://doi.org/10.1029/JB087IB05P03873.

    Article  Google Scholar 

  26. LI L R, DENG J H, ZHENG L, et al. Dominant frequency characteristics of acoustic emissions in white marble during direct tensile tests [J]. Rock Mechanics and Rock Engineering, 2017, 50(5): 1337–1346. DOI: https://doi.org/10.1007/s00603-016-1162-2.

    Article  Google Scholar 

  27. AMITRANO D. Brittle-ductile transition and associated seismicity: Experimental and numerical studies and relationship with the b value [J]. Journal of Geophysical Research: Solid Earth, 2003, 108(B1): 2044. DOI: https://doi.org/10.1029/2001jb000680.

    Article  Google Scholar 

  28. LIU Xi-ling, HAN Meng-si, HE Wei, et al. A new b value estimation method in rock acoustic emission testing [J]. Journal of Geophysical Research: Solid Earth, 2020, 125(12): e2020JB019658. DOI: https://doi.org/10.1029/2020jb019658.

    Google Scholar 

  29. CHEN Dao-long, LIU Xi-ling, HE Wei, et al. Effect of attenuation on amplitude distribution and b value in rock acoustic emission tests [J]. Geophysical Journal International, 2021, 229(2): 933–947. DOI: https://doi.org/10.1093/gji/ggab480.

    Article  Google Scholar 

  30. SHAO Shi-shi, RANJITH P G, WASANTHA P L P, et al. Experimental and numerical studies on the mechanical behaviour of Australian Strathbogie granite at high temperatures: An application to geothermal energy [J]. Geothermics, 2015, 54: 96–108. DOI: https://doi.org/10.1016/j.geothermics.2014.11.005.

    Article  Google Scholar 

  31. GHAZVINIAN E. Fracture initiation and propagation in low porosity crystalline rocks: Implications for excavation damage zone (EDZ) mechanics [D]. Kingston, Canada: Queen’s University, 2015.

    Google Scholar 

  32. SHIROLE D, HEDAYAT A, GHAZANFARI E, et al. Evaluation of an ultrasonic method for damage characterization of brittle rocks [J]. Rock Mechanics and Rock Engineering, 2020, 53(5): 2077–2094. DOI: https://doi.org/10.1007/s00603-020-02045-y.

    Article  Google Scholar 

  33. WANG Xiao-qiong, SCHUBNEL A, FORTIN J, et al. Physical properties and brittle strength of thermally cracked granite under confinement [J]. Journal of Geophysical Research: Solid Earth, 2013, 118(12): 6099–6112. DOI: https://doi.org/10.1002/2013jb010340.

    Article  Google Scholar 

  34. ZHANG Shi-huai, WU Shun-chuan, ZHANG Guang, et al. Three-dimensional evolution of damage in sandstone Brazilian discs by the concurrent use of active and passive ultrasonic techniques [J]. Acta Geotechnica, 2020, 15(2): 393–408. DOI: https://doi.org/10.1007/s11440-018-0737-3.

    Article  Google Scholar 

  35. STANCHITS S, VINCIGUERRA S, DRESEN G. Ultrasonic velocities, acoustic emission characteristics and crack damage of basalt and granite [J]. Pure and Applied Geophysics, 2006, 163(5–6): 975–994. DOI: https://doi.org/10.1007/s00024-006-0059-5.

    Article  Google Scholar 

  36. XIONG Liang-feng, WU Shun-chuan, ZHANG Shi-huai. Mechanical behavior of a granite from Wuyi Mountain: Insights from strain-based approaches [J]. Rock Mechanics and Rock Engineering, 2019, 52(3): 719–736. DOI: https://doi.org/10.1007/s00603-018-1617-8.

    Article  Google Scholar 

  37. FAIRHURST C, HUDSON J. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36: 279–289.

    Google Scholar 

  38. XU Lei, GONG Feng-qiang, LIU Zhi-xiang. Experiments on rockburst proneness of pre-heated granite at different temperatures: Insights from energy storage, dissipation and surplus [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(5): 1343–1355. DOI: https://doi.org/10.1016/j.jrmge.2021.08.004.

    Article  Google Scholar 

  39. YIN Tu-bing, TAN Xiao-song, WU You, et al. Temperature dependences and rate effects on Mode II fracture toughness determined by punch-through shear technique for granite [J]. Theoretical and Applied Fracture Mechanics, 2021, 114: 103029. DOI: https://doi.org/10.1016/j.tafmec.2021.103029.

    Article  Google Scholar 

  40. LI Xiang, HUANG Si, YIN Tu-bing, et al. Dynamic properties of thermal shock treated sandstone subjected to coupled dynamic and static loads [J]. Minerals, 2021, 11(8): 889. DOI: https://doi.org/10.3390/min11080889.

    Article  Google Scholar 

  41. ZHANG Shi-huai, WU Shun-chuan, CHU Chao-qun, et al. Acoustic emission associated with self-sustaining failure in low-porosity sandstone under uniaxial compression [J]. Rock Mechanics and Rock Engineering, 2019, 52(7): 2067–2085. DOI: https://doi.org/10.1007/s00603-018-1686-8.

    Article  Google Scholar 

  42. LI Ning, MA Xin-fang, ZHANG Shi-cheng, et al. Thermal effects on the physical and mechanical properties and fracture initiation of Laizhou granite during hydraulic fracturing [J]. Rock Mechanics and Rock Engineering, 2020, 53(6): 2539–2556. DOI: https://doi.org/10.1007/s00603-020-02082-7.

    Article  Google Scholar 

  43. BRACE W F, PAULDING B W, SCHOLZ C. Dilatancy in the fracture of crystalline rocks [J]. Journal of Geophysical Research Atmospheres, 1966, 71(16): 3939–3953. DOI: https://doi.org/10.1029/jz071i016p03939.

    Article  Google Scholar 

  44. CAI M, KAISER P K, TASAKA Y, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(5): 833–847. DOI: https://doi.org/10.1016/j.ijrmms.2004.02.001.

    Article  Google Scholar 

  45. MARTIN C D, CHANDLER N A. The progressive fracture of Lac du Bonnet granite [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1994, 31(6): 643–659. DOI: https://doi.org/10.1016/0148-9062(94)90005-1.

    Article  Google Scholar 

  46. NICKSIAR M, MARTIN C D. Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks [J]. Rock Mechanics and Rock Engineering, 2012, 45(4): 607–617. DOI: https://doi.org/10.1007/s00603-012-0221-6.

    Article  Google Scholar 

  47. PENG Jun, CAI Ming, RONG Guan, et al. Stresses for crack closure and its application to assessing stress-induced microcrack damage [J]. Journal of Rock Mechanics and Engineering, 2015, 34(6): 1091–1100. DOI: https://doi.org/10.13722/j.cnki.jrme.2014.1151. (in Chinese)

    Google Scholar 

  48. LI Zhi, FORTIN J, NICOLAS A, et al. Physical and mechanical properties of thermally cracked andesite under pressure [J]. Rock Mechanics and Rock Engineering, 2019, 52(10): 3509–3529. DOI: https://doi.org/10.1007/s00603-019-01785-w.

    Article  Google Scholar 

  49. DAVID C, MENÉNDEZ B, DAROT M. Influence of stress-induced and thermal cracking on physical properties and microstructure of La Peyratte granite [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(4): 433–448. DOI: https://doi.org/10.1016/S0148-9062(99)00010-8.

    Article  Google Scholar 

  50. THOMSEN L. Weak elastic anisotropy [J]. Geophysics, 1986, 51(10): 1954–1966. DOI: https://doi.org/10.1190/1.1442051.

    Article  Google Scholar 

  51. ZHANG Wei-qiang, SUN Qiang, HAO Shu-qing, et al. Experimental study on the variation of physical and mechanical properties of rock after high temperature treatment [J]. Applied Thermal Engineering, 2016, 98: 1297–1304. DOI: https://doi.org/10.1016/j.applthermaleng.2016.01.010.

    Article  Google Scholar 

  52. GUTENBERG B, RICHTER C F. Frequency of earthquakes in California [J]. Bulletin of the Seismological Society of America, 1944, 34(4): 185–188. DOI: https://doi.org/10.1785/bssa0340040185.

    Article  Google Scholar 

  53. SCHOLZ C H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes [J]. Bulletin of the Seismological Society of America, 1968, 58(1): 399–415. DOI: https://doi.org/10.1785/bssa0580010399.

    Article  Google Scholar 

  54. COLOMBO I S, MAIN I G, FORDE M C. Assessing damage of reinforced concrete beam using “b-value” analysis of acoustic emission signals [J]. Journal of Materials in Civil Engineering, 2003, 15(3): 280–286. DOI: https://doi.org/10.1061/(asce)0899-1561(2003)15:3(280).

    Article  Google Scholar 

  55. AKI K. Maximum likelihood estimate of b in the formula logN=abM and its confidence limits [J]. Bulletin of the Earthquake Research Institute University of Tokyo, 1965, 43: 237–239.

    Google Scholar 

  56. SCHULTZ R, ATKINSON G, EATON D W, et al. Hydraulic fracturing volume is associated with induced earthquake productivity in the Duvernay play [J]. Science, 2018, 359(6373): 304–308. DOI: https://doi.org/10.1126/science.aao0159.

    Article  Google Scholar 

  57. SHARMA P K, SINGH T N. A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength [J]. Bulletin of Engineering Geology and the Environment, 2008, 67(1): 17–22. DOI: https://doi.org/10.1007/s10064-007-0109-y.

    Article  Google Scholar 

  58. YAGIZ S. P-wave velocity test for assessment of geotechnical properties of some rock materials [J]. Bulletin of Materials Science, 2011, 34(4): 947–953. DOI: https://doi.org/10.1007/s12034-011-0220-3.

    Article  Google Scholar 

  59. ZHANG Jin-yuan, SHEN Yan-jun, YANG Geng-she, et al. Inconsistency of changes in uniaxial compressive strength and P-wave velocity of sandstone after temperature treatments [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(1): 143–153. DOI: https://doi.org/10.1016/j.jrmge.2020.05.008.

    Article  Google Scholar 

  60. ZHANG Fan, ZHANG Yu-hao, YU Yu-dong, et al. Influence of cooling rate on thermal degradation of physical and mechanical properties of granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 129: 104285. DOI: https://doi.org/10.1016/j.ijrmms.2020.104285.

    Article  Google Scholar 

  61. JIN Pei-hua, HU Yao-qing, SHAO Ji-xi, et al. Influence of different thermal cycling treatments on the physical, mechanical and transport properties of granite [J]. Geothermics, 2019, 78: 118–128. DOI: https://doi.org/10.1016/j.geothermics.2018.12.008.

    Article  Google Scholar 

  62. ZHU Zhen-nan, RANJITH P G, TIAN Hong, et al. Relationships between P-wave velocity and mechanical properties of granite after exposure to different cyclic heating and water cooling treatments [J]. Renewable Energy, 2021, 168: 375–392. DOI: https://doi.org/10.1016/j.renene.2020.12.048.

    Article  Google Scholar 

  63. SIRDESAI N N, SINGH T N, RANJITH P G, et al. Effect of varied durations of thermal treatment on the tensile strength of red sandstone [J]. Rock Mechanics and Rock Engineering, 2017, 50(1): 205–213. DOI: https://doi.org/10.1007/s00603-016-1047-4.

    Article  Google Scholar 

  64. GAUTAM P K, VERMA A K, SHARMA P, et al. Evolution of thermal damage threshold of jalore granite [J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2949–2956. DOI: https://doi.org/10.1007/s00603-018-1493-2.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-chuan Wu  (吴顺川).

Additional information

Foundation item

Project(51934003) supported by the National Natural Science Foundation of China; China; Project(202105AE160023) supported by the Yunnan Innovation Team, China

Contributors

GUO Pei provided the concept and wrote the first draft of the manuscript. WU Shun-chuan supervised the work and edited the draft of the manuscript. JIANG Ri-hua and ZHANG Guang analyzed the measured data.

Conflict of interest

GUO Pei, WU Shun-chuan, JIANG Ri-hua, ZHANG Guang declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, P., Wu, Sc., Jiang, Rh. et al. Damage characteristics of thermally treated granite under uniaxial compression: Insights from active and passive ultrasonic techniques. J. Cent. South Univ. 29, 4078–4093 (2022). https://doi.org/10.1007/s11771-022-5205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5205-4

Key words

关键词

Navigation