Skip to main content
Log in

Experimental study of laser cladding process and prediction of process parameters by artificial neural network (ANN)

激光包覆工艺的实验研究及人工神经网络对工艺参数的预测

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Laser cladding of powder mixture of TiN and SS304 is carried out on an SS304 substrate with the help of fibre laser. The experiments are performed on SS304, as per the Taguchi orthogonal array (L16) by different combinations of controllable parameters (microhardness and clad thickness). The microhardness and clad thickness are recorded at all the experimental runs and studied using Taguchi S/N ratio and the optimum controllable parametric combination is obtained. However, an artificial neural network (ANN) identifies different sets of optimal combinations from Taguchi method but they both got almost the same clad thickness and hardness values. The micro-hardness of cladded layer is found to be 6.22 times (HV0.5752) the SS304 hardness (HV0.5121). The presence of nitride ceramics results in a higher micro hardness. The cladded surface is free from cracks and pores. The average clad thickness is found to be around 0.6 mm.

摘要

根据正交实验(L16)设计方案,将氮化钛与SS304的粉末混合物在光纤激光器上对SS304衬底进 行激光包覆。利用Taguchi 信噪比方法对得到的包覆层微观硬度和包厚度进行分析,得到了最优的参 数组合。并利用人工神经网络(ANN)对比分析得到与Taguchi 方法不同的最优组合,但二种方法得到的 包覆层厚度和微观硬度几乎是相同的,包覆层微观硬度(HV0.5121)是SS304 衬底硬度(HV0.5752)的6 倍 多。氮化物陶瓷的存在导致了更高的微观硬度,包覆层表面无裂缝和孔隙, 平均包覆层厚度达 0.6 mm。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RAGHURAM H, KATSICH C, PICHELBAUER K, et al. Design of wear and corrosion resistant FeNi-graphite composites by laser cladding [J]. Surface and Coatings Technology, 2019, 377: 124897. DOI: https://doi.org/10.1016/j.surfcoat.2019.124897.

    Article  Google Scholar 

  2. DO VALE N L, FERNANDES C A, de A SANTOS R, et al. Effect of laser parameters on the characteristics of a laser clad AISI 431 stainless steel coating on carbon steel substrate [J]. JOM, 2021, 73(10): 2868–2877. DOI: https://doi.org/10.1007/s11837-021-04835-3

    Article  Google Scholar 

  3. BALAMURUGAN K G, DURAISELVAM M. Wear mechanism of laser clad Ti6Al4V alloy on a pure magnesium substrate [C]//Recent Advances in Materials Technologies. Singapore: Springer, 2022: 317–326. DOI: https://doi.org/10.1007/978-981-19-3895-5_25.

    Google Scholar 

  4. AL-SAYED S R, SAMAD F A, MOHAMED T, et al. Novel surface topography and microhardness characterization of laser clad layer on TC4 titanium alloy using laser-induced breakdown spectroscopy and machine learning [J]. Metallurgical and Materials Transactions A, 2022, 53(10): 3639–3653. DOI: https://doi.org/10.1007/s11661-022-06772-5.

    Article  Google Scholar 

  5. KUMAR S, MANDAL A, DAS A K. The effect of process parameters and characterization for the laser cladding of cBN based composite clad over the Ti6Al4V alloy [J]. Materials Chemistry and Physics, 2022, 288: 126410. DOI: https://doi.org/10.1016/j.matchemphys.2022.126410.

    Article  Google Scholar 

  6. ZHAI Wen-zheng, BAI Li-chun, ZHOU Run-hua, et al. Recent progress on wear-resistant materials: Designs, properties, and applications [J]. Advanced Science, 2021, 8(11): 2003739. DOI: https://doi.org/10.1002/advs.202003739.

    Article  Google Scholar 

  7. WANG Jiang-ting, TIMOKHINA I, SHARP K, et al. Microstructure and precipitation behaviours of laser clad 7075 aluminium alloy [J]. Surface and Coatings Technology, 2022, 445: 128726. DOI: https://doi.org/10.1016/j.surfcoat.2022.128726.

    Article  Google Scholar 

  8. SINGH S, KUMAR P, GOYAL D K, et al. Erosion behavior of laser cladded Colmonoy-6 + 50%WC on SS410 steel under accelerated slurry erosion testing [J]. International Journal of Refractory Metals and Hard Materials, 2021, 98: 105573. DOI: https://doi.org/10.1016/j.ijrmhm.2021.105573.

    Article  Google Scholar 

  9. KIM Y M, SHIN G Y, KIM Y C, et al. Thermal and corrosion characteristics of laser-cladded H13 layer on C45 substrate [J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(20): 11013–11019. DOI: https://doi.org/10.1007/s10973-022-11297-5.

    Article  Google Scholar 

  10. ZHU Shi-chao, CHEN Wen-liang, ZHAN Xiao-hong, et al. Parameter optimisation of laser cladding repair for an Invar alloy mould [J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2019, 233(8): 1859–1871. DOI: https://doi.org/10.1177/0954405418805653.

    Article  Google Scholar 

  11. LIU Shan-shan, PANG Ming. Effect of TiB2 content on properties of nickel-coated graphite self-lubricating coating prepared by laser cladding [J]. Coatings, 2021, 11(12): 1501. DOI: https://doi.org/10.3390/coatings11121501.

    Article  Google Scholar 

  12. HONG Si-chun, LI Jun, ZHAO Peng, et al. Evolution in wear and high-temperature oxidation resistance of laser-clad AlxMoNbTa refractory high-entropy alloys coatings with Al addition content [J]. Coatings, 2022, 12(2): 121. DOI: https://doi.org/10.3390/coatings12020121.

    Article  Google Scholar 

  13. ZHANG Ying-qiao, JIN Kun, LI Zhi-yong, et al. Microstructures, wear and corrosion behaviors of laser cladding in situ synthetic Al3Ti/AlNi/AlNi3/MgNi2 composite coatings on magnesium alloy using Al as middle layer [J]. Journal of Materials Engineering and Performance, 2022: 1–13. DOI: https://doi.org/10.1007/s11665-022-07370-7.

  14. WU Zhi-peng, YIN Kai, WU Jun-rui, et al. Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability [J]. Nanoscale, 2021, 13(4): 2209–2226. DOI: https://doi.org/10.1039/d0nr06639g.

    Article  Google Scholar 

  15. YIN Kai, WANG Ling-xiao, DENG Qin-wen, et al. Femtosecond laser thermal accumulation-triggered micro-/nanostructures with patternable and controllable wettability towards liquid manipulating [J]. Nano-Micro Letters, 2022, 14(1): 97. DOI: https://doi.org/10.1007/s40820-022-00840-6.

    Article  Google Scholar 

  16. HE Yu-chun, WANG Ling-xiao, WU Ting-ni, et al. Facile fabrication of hierarchical textures for substrate-independent and durable superhydrophobic surfaces [J]. Nanoscale, 2022, 14(26): 9392–9400. DOI: https://doi.org/10.1039/d2nr02157a.

    Article  Google Scholar 

  17. HE X, SONG R G, KONG D J. Effects of TiC on the microstructure and properties of TiC/TiAl composite coating prepared by laser cladding [J]. Optics & Laser Technology, 2019, 112: 339–348. DOI: https://doi.org/10.1016/j.optlastec.2018.11.037.

    Article  Google Scholar 

  18. ERFANMANESH M, ABDOLLAH-POUR H, MOHAMMADIAN-SEMNANI H, et al. An empirical-statistical model for laser cladding of WC-12Co powder on AISI 321 stainless steel [J]. Optics & Laser Technology, 2017, 97: 180–186. DOI: https://doi.org/10.1016/j.optlastec.2017.06.026.

    Article  Google Scholar 

  19. YANG Jiao-xi, BAI Bing, KE Hua, et al. Effect of metallurgical behavior on microstructure and properties of FeCrMoMn coatings prepared by high-speed laser cladding [J]. Optics & Laser Technology, 2021, 144: 107431. DOI: https://doi.org/10.1016/j.optlastec.2021.107431.

    Article  Google Scholar 

  20. ZENG Min, YAN Hong, YU Bao-biao, et al. Microstructure, microhardness and corrosion resistance of laser cladding Ni-WC coating on AlSi5Cu1Mg alloy [J]. Transactions of Nonferrous Metals Society of China, 2021, 31(9): 2716–2728. DOI: https://doi.org/10.1016/S1003-6326(21)65687-X.

    Article  Google Scholar 

  21. DENG Zi-xin, LIU De-fu, XIONG Yi, et al. Laser cladding preparation of HA-Ag gradient bioactive ceramic coating: A feasibility study [J]. Surface and Coatings Technology, 2021, 427: 127848. DOI: https://doi.org/10.1016/j.surfcoat.2021.127848.

    Article  Google Scholar 

  22. ÖZEL S, VURAL E, BINICI M. Optimization of the effect of thermal barrier coating (TBC) on diesel engine performance by Taguchi method [J]. Fuel, 2020, 263: 116537. DOI: https://doi.org/10.1016/j.fuel.2019.116537.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashi Tyagi.

Additional information

Contributors

Rashi TYAGI provided the concept and edited the draft of manuscript. The overarching research goals were developed by Rashi TYAGi. Shakti KUMAR and Mohammad Shahid RAZA provided the measured landslides displacement data and analyzed the measured data. Ashutosh TRIPATHI established the models and calculated the predicted displacement. Alok Kumar DAS analyzed the calculated results. The initial draft of the manuscript was written by Rashi TYAGI, Shakti KUMAR, Mohammad Shahid RAZA, Ashutosh TRIPATHI, and Alok Kumar DAS. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

Rashi TYAGI, Shakti KUMAR, Mohammad Shahid RAZA, Ashutosh TRIPATHI, and Alok Kumar DAS declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, R., Kumar, S., Raza, M.S. et al. Experimental study of laser cladding process and prediction of process parameters by artificial neural network (ANN). J. Cent. South Univ. 29, 3489–3502 (2022). https://doi.org/10.1007/s11771-022-5170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5170-y

Key words

关键词

Navigation