Skip to main content
Log in

Laser-induced forward transferred silver nanomembrane with controllable light absorption

基于激光诱导向前转移的可调光吸收银纳米薄膜

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Laser processing provides highly-controlled modification and on-demand fabrication of plasmon metal nanostructures for light absorption and photothermal convention. We present the laser-induced forward tansfer (LIFT) fabrication of silver nanomembranes in control of light absorption. By varying the hatch distance, different morphologies of randomly distributed plasmon silver nanostructures were produced, leading to well-controlled light absorption levels from 11% to 81% over broadband. The anti-reflection features were maintained below 17%. Equilibrated and plain absorptions were obtained throughout all absorption levels with a maximum intensity fluctuation of ±8.5% for the 225 µJ cases. The 45 µJ pulse energy can offer a highly equilibrated absorption at a 60% absorption level with an intensity fluctuation of ±1%. Pattern transfer was also achieved on a thin tape surface. The laser-transferred characters and patterns demonstrate a localized temperature rise. A rapid temperature rising of roughly 15 °C can be achieved within 1 s. The LIFT process is highly efficiently fabricated with a typical speed value of 103 to 105 cm2/h. The results indicated that LIFT is a well-controlled and efficient method for the production of optical films with specific absorption levels.

摘要

激光加工技术具有可控性强、按需制备的优点,可用于制备表面等离激元金属纳米结构,在光 吸收及光热转换领域具有广泛的应用价值。本文中采用激光诱导向前转移技术制备的银纳米薄膜,具 有光学吸收率可调的特性,兼容玻璃、柔性聚合物等衬底。通过控制激光线扫描间隔得到具有不同形 貌且随机分布的银纳米结构薄膜,其具有宽光谱平坦吸收特性,光吸收率可在11%到81%之间线性调 节,同时反射率低于17%。此外,利用优化的激光脉冲能量(45 μJ)得到了具有高平坦光吸收特性的银 纳米薄膜,其吸收率为60%,波动为±1%。这一技术可实现银纳米薄膜的图案化高速转移,转移速率 可达103到105 cm2/h。实验同时展示了银纳米结构薄膜的光热转换造成的图案化温升现象。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHOU Lin, TAN Ying-ling, WANG Jing-yang, et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination [J]. Nature Photonics, 2016, 10(6): 393–398. DOI: https://doi.org/10.1038/nphoton.2016.75.

    Article  Google Scholar 

  2. FAN Pei-xun, WU Hui, ZHONG Min-lin, et al. Large-scale cauliflower-shaped hierarchical copper nanostructures for efficient photothermal conversion [J]. Nanoscale, 2016, 8(30): 14617–14624. DOI: https://doi.org/10.1039/c6nr03662g.

    Article  Google Scholar 

  3. ZHENG Bu-xiang, WANG Wen-jun, JIANG Ge-dong, et al. Fabrication of broadband antireflective black metal surfaces with ultra-light-trapping structures by picosecond laser texturing and chemical fluorination [J]. Applied Physics B, 2016, 122(6): 1–15. DOI: https://doi.org/10.1007/s00340-016-6449-1.

    Article  Google Scholar 

  4. FAN Pei-xun, ZHONG Min-lin, BAI Ben-feng, et al. Tuning the optical reflection property of metal surfaces via micro-nano particle structures fabricated by ultrafast laser [J]. Applied Surface Science, 2015, 359: 7–13. DOI: https://doi.org/10.1016/j.apsusc.2015.10.069.

    Article  Google Scholar 

  5. YANG Zhe, HAN Xue-mei, LEE H K, et al. Shape-dependent thermo-plasmonic effect of nanoporous gold at the nanoscale for ultrasensitive heat-mediated remote actuation [J]. Nanoscale, 2018, 10(34): 16005–16012. DOI: https://doi.org/10.1039/c8nr04053b.

    Article  Google Scholar 

  6. YAO Jia-nan, LI Ruo-zhou, FANG Yu-ming, et al. Three-dimensional printing in hydrogel for a complex waveguiding photothermal microactuator [J]. OSA Continuum, 2021, 4(5): 1555. DOI: https://doi.org/10.1364/osac.418590.

    Article  Google Scholar 

  7. KIRIARACHCHI H D, AWAD F S, HASSAN A A, et al. Plasmonic chemically modified cotton nanocomposite fibers for efficient solar water desalination and wastewater treatment [J]. Nanoscale, 2018, 10(39): 18531–18539. DOI: https://doi.org/10.1039/c8nr05916k.

    Article  Google Scholar 

  8. ASLAM U, RAO V G, CHAVEZ S, et al. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures [J]. Nature Catalysis, 2018, 1(9): 656–665. DOI: https://doi.org/10.1038/s41929-018-0138-x.

    Article  Google Scholar 

  9. ZHANG Tong, WANG Shan-jiang, ZHANG Xiao-yang, et al. Recent progress on nanostructure-based broadband absorbers and their solar energy thermal utilization [J]. Frontiers of Chemical Science and Engineering, 2021, 15(1): 35–48. DOI: https://doi.org/10.1007/s11705-020-1937-6.

    Article  Google Scholar 

  10. SØNDERGAARD T, NOVIKOV S M, HOLMGAARD T, et al. Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves [J]. Nature Communications, 2012, 3: 969. DOI: https://doi.org/10.1038/ncomms1976.

    Article  Google Scholar 

  11. XU N, HU X, XU W, et al. Mushrooms as efficient solar steam-generation devices [J]. Advanced Materials (Deerfield Beach, Fla), 2017, 29(28): 1606762. DOI: https://doi.org/10.1002/adma.201606762.

    Article  Google Scholar 

  12. LI Ruo-zhou, HU An-ming, BRIDGES D, et al. Robust Ag nanoplate ink for flexible electronics packaging [J]. Nanoscale, 2015, 7(16): 7368–7377. DOI: https://doi.org/10.1039/c5nr00312a.

    Article  Google Scholar 

  13. LI Ruo-zhou, YAN Jing, FANG Yu-ming, et al. Laser-scribed lossy microstrip lines for radio frequency applications [J]. Applied Sciences, 2019, 9(3): 415. DOI: https://doi.org/10.3390/app9030415.

    Article  Google Scholar 

  14. LI Ruo-zhou, WU Zhe-yuan, JI Jun-hui, et al. A wideband termination based on laser-scribed lossy microstrip line structures [J]. Applied Sciences, 2021, 11(15): 6960. DOI: https://doi.org/10.3390/app11156960.

    Article  Google Scholar 

  15. HU An-ming. Laser micro-nano-manufacturing and 3D microprinting [M]. Cham: Springer International Publishing, 2020. DOI: https://doi.org/10.1007/978-3-030-59313-1.

    Book  Google Scholar 

  16. BEREAN K J, SIVAN V, KHODASEVYCH I, et al. Laser-induced dewetting for precise local generation of Au nanostructures for tunable solar absorption [J]. Advanced Optical Materials, 2016, 4(8): 1247–1254. DOI: https://doi.org/10.1002/adom.201600166.

    Article  Google Scholar 

  17. WEN Zhi-dong, SHI Hai-yan, YUE Song, et al. Large-scale black silicon induced by femtosecond laser assisted with laser cleaning [J]. Frontiers in Physics, 2022, 10: 862605. DOI: https://doi.org/10.3389/fphy.2022.862605.

    Article  Google Scholar 

  18. WU Ting-ni, WU Zhi-peng, HE Yu-chun, et al. Femtosecond laser textured porous nanowire structured glass for enhanced thermal imaging [J]. Chinese Optics Letters, 2022, 20(3): 033801. DOI: https://doi.org/10.3788/col202220.033801.

    Article  Google Scholar 

  19. HE Yu-chun, WANG Ling-xiao, WU Ting-ni, et al. Facile fabrication of hierarchical textures for substrate-independent and durable superhydrophobic surfaces [J]. Nanoscale, 2022, 14(26): 9392–9400. DOI: https://doi.org/10.1039/d2nr02157a.

    Article  Google Scholar 

  20. ZHAI Yu-sheng, CHEN Guang-dian, JI Ji-tao, et al. Large-scale, broadband absorber based on three-dimensional aluminum nanospike arrays substrate for surface plasmon induced hot electrons photodetection [J]. Nanotechnology, 2019, 30(37): 375201. DOI: https://doi.org/10.1088/1361-6528/ab2158.

    Article  Google Scholar 

  21. VOROBYEV A Y, GUO Chun-lei. Colorizing metals with femtosecond laser pulses [J]. Applied Physics Letters, 2008, 92(4): 041914. DOI: https://doi.org/10.1063/1.2834902.

    Article  Google Scholar 

  22. FAN Pei-xun, ZHONG Min-lin, LI Lin, et al. Sequential color change on copper surfaces via micro/nano structure modification induced by a picosecond laser [J]. Journal of Applied Physics, 2013, 114(8): 083518. DOI: https://doi.org/10.1063/1.4819326.

    Article  Google Scholar 

  23. ZHU Xiao-long, VANNAHME C, HØJLUND-NIELSEN E, et al. Plasmonic colour laser printing [J]. Nature Nanotechnology, 2016, 11(4): 325–329. DOI: https://doi.org/10.1038/nnano.2015.285.

    Article  Google Scholar 

  24. LI Ruo-zhou, GUO Lv-jiu, LIU Lei-lei, et al. Laser-induced forward transfer of silver nanoparticles for a black metal absorber [J]. Frontiers in Physics, 2022, 10: 932050. DOI: https://doi.org/10.3389/fphy.2022.932050.

    Article  Google Scholar 

  25. SOPEÑA P, ARRESE J, GONZÁLEZ-TORRES S, et al. Low-cost fabrication of printed electronics devices through continuous wave laser-induced forward transfer [J]. ACS Applied Materials & Interfaces, 2017, 9(35): 29412–29417. DOI: https://doi.org/10.1021/acsami.7b04409.

    Article  Google Scholar 

  26. MUNOZ-MARTIN D, BRASZ C F, CHEN Y, et al. Laser-induced forward transfer of high-viscosity silver pastes [J]. Applied Surface Science, 2016, 366: 389–396. DOI: https://doi.org/10.1016/j.apsusc.2016.01.029.

    Article  Google Scholar 

  27. MIKŠYS J, ARUTINOV G, RÖMER G R B E. Pico- to nanosecond pulsed laser-induced forward transfer (LIFT) of silver nanoparticle inks: A comparative study [J]. Applied Physics A, 2019, 125(12): 1–11. DOI: https://doi.org/10.1007/s00339-019-3085-8.

    Article  Google Scholar 

  28. BOUTOPOULOS C, KALPYRIS I, SERPETZOGLOU E, et al. Laser-induced forward transfer of silver nanoparticle ink: Time-resolved imaging of the jetting dynamics and correlation with the printing quality [J]. Microfluidics and Nanofluidics, 2014, 16(3): 493–500. DOI: https://doi.org/10.1007/s10404-013-1248-z.

    Article  Google Scholar 

  29. FARDEL R, NAGEL M, NÜESCH F, et al. Laser-induced forward transfer of organic LED building blocks studied by time-resolved shadowgraphy [J]. The Journal of Physical Chemistry C, 2010, 114(12): 5617–5636. DOI: https://doi.org/10.1021/jp907387q.

    Article  Google Scholar 

  30. LIU Yu-han, ZHANG Jian-guo, SHANGGUAN Shi-yong, et al. Temporal-spatial measurement of surface morphological evolution time in nanosecond laser irradiation on the copper film [J]. Frontiers in Physics, 2022, 10: 845576. DOI: https://doi.org/10.3389/fphy.2022.845576.

    Article  Google Scholar 

  31. GAO Xiao-yong, WANG Song-you, LI Jing, et al. Study of structure and optical properties of silver oxide films by ellipsometry, XRD and XPS methods [J]. Thin Solid Films, 2004, 455–456: 438–442. DOI: https://doi.org/10.1016/j.tsf.2003.11.242.

    Article  Google Scholar 

  32. EL MEL A A, STEPHANT N, HAMON J, et al. Creating nanoporosity in silver nanocolumns by direct exposure to radio-frequency air plasma [J]. Nanoscale, 2016, 8(1): 141–148. DOI: https://doi.org/10.1039/c5nr07145c.

    Article  Google Scholar 

  33. de ABERASTURI D J, SERRANO-MONTES A B, LIZMARZÁN L M. Modern applications of plasmonic nanoparticles: From energy to health [J]. Advanced Optical Materials, 2015, 3(5): 602–617. DOI: https://doi.org/10.1002/adom.201500053.

    Article  Google Scholar 

  34. de ABAJO F J G, HOWIE A. Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics [J]. Physical Review Letters, 1998, 80(23): 5180–5183. DOI: https://doi.org/10.1103/physrevlett.80.5180.

    Article  Google Scholar 

Download references

Funding

Projects(61704090, 11904177) supported by the National Natural Science Foundation of China; Project(KFJJ20210205) supported by the National and Local Joint Engineering Laboratory of RF Integration and Micro-Assembly Technology, Nanjing University of Posts and Telecommunications, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruo-zhou Li  (李若舟).

Additional information

Contributors

LI Ruo-zhou provided the concept. LI Ruo-zhou, YAN Jing, and GUO Lyu-jiu carried out the experiment. YANG Ming-qing and GUO Lyu-jiu processed the experimental data. LI Ruo-zhou and YANG Ming-qing wrote the draft of the manuscript. QU Ke revised the manuscript.

Conflict of interest

LI Ruo-zhou, GUO Lyu-jiu, YANG Ming-qing, QU Ke, and YAN Jing declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Rz., Guo, Lj., Yang, Mq. et al. Laser-induced forward transferred silver nanomembrane with controllable light absorption. J. Cent. South Univ. 29, 3399–3409 (2022). https://doi.org/10.1007/s11771-022-5167-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5167-6

Key words

关键词

Navigation