Skip to main content

Recent advances in coherent perfect absorber-lasers and their future applications

相干完美吸收-激光器的最新进展及其未来应用展望

Abstract

In recent years, peculiar physical phenomena enabled by non-Hermitian systems, especially the parity-time (PT)-symmetric systems, have drawn tremendous research interests. Particularly, special spectral degeneracies known as exceptional points (EPs) and coherent perfect absorber-laser (CPAL) points where zero and infinite large eigenvalues coexist are the most popular topics to be studied. To date, the discussions of EPs that serve as transition boundaries between broken PT-symmetry phase and exact PT-symmetry phase have been intensively presented. However, the theoretical analysis and experimental validations of CPAL points are inadequate. Different from EPs, CPAL points, as a special solution of broken PT-symmetry phase, may exhibit even further counterintuitive physical features, which may have significant implications to study non-Hermitian physics. Here, we review some recent advances of CPAL phenomena in different sub-disciplines of physics, including optics, electronics and electromagnetics, and acoustics. Additionally, we also provide an envision of future directions and applications of CPAL systems.

摘要

近年来,非厄米系统,特别是宇称-时间(PT)对称系统引起的特殊物理现象吸引了许多科研人员。具有光谱退化性质的异常点(EP)和特征值分别为无限大及零的相干完美吸收-激光(CPAL)点是其中最为热门的研究课题。迄今为止,对于作为PT对称系统的破缺相和确定相边界的EP讨论已经有了非常多的成果。然而,针对CPAL点的理论分析和实验验证,相对于EP 来说,仍有不足。与EP 不同,CPAL点作为PT对称系统中破缺相中的一个特殊解,可能会表现出更加违反直觉的物理特征,而这些表现可能对研究非厄米物理学有着重要的意义。本文回顾了在不同物理子学科中关于CPAL现象的一些研究,包括光学、电子和电磁学、以及声学。此外,对于CPAL系统未来可能的发展方向及应用给出了一些设想。

This is a preview of subscription content, access via your institution.

References

  1. BENDER C M, BOETTCHER S. Real spectra in non-Hermitian Hamiltonians having PT symmetry [J]. Physical Review Letters, 1998, 80: 5243. DOI: https://doi.org/10.1103/PhysRevLett.80.5243.

    Article  MathSciNet  MATH  Google Scholar 

  2. BENDER C M, BRODY D C, JONES H F. Complex extension of quantum mechanics [J]. Physical Review Letters, 2002, 89: 270401. DOI: https://doi.org/10.1103/PhysRevLett.89.270401.

    Article  MathSciNet  MATH  Google Scholar 

  3. BENDER C M, BOETTCHER S, MEISINGER P N. PT-symmetric quantum mechanics [J]. Journal of Mathematical Physics, 1999, 40(5): 2201–2229. DOI: https://doi.org/10.1063/1.532860.

    Article  MathSciNet  MATH  Google Scholar 

  4. LÉVAI G, ZNOJIL M. Systematic search for PT-symmetric potentials with real energy spectra [J]. Journal of Physics A: Mathematical and General, 2000, 33: 7165–7180. DOI: https://doi.org/10.1088/0305-4470/33/40/313.

    Article  MathSciNet  MATH  Google Scholar 

  5. HEISS W. Exceptional points of non-Hermitian operators [J]. Journal of Physics A: Mathematical and General, 2004, 37: 2455. DOI: https://doi.org/10.1088/0305-4470/37/6/034.

    Article  MathSciNet  MATH  Google Scholar 

  6. BERRY M V. Physics of non-Hermitian degeneracies [J]. Czechoslovak Journal of Physics, 2004, 54: 1039–1047.DOI: https://doi.org/10.1023/B:CJOP.0000044002.05657.04.

    Article  MathSciNet  Google Scholar 

  7. MOISEYEV N. Non-hermitian quantum mechanics [M]. Cambridge: Cambridge University Press, 2011. DOI: https://doi.org/10.1017/cbo9780511976186.

    Book  MATH  Google Scholar 

  8. CHONG Y D, GE Li, CAO Hui, et al. Coherent perfect absorbers: Time-reversed lasers [J]. Physical Review Letters, 2010, 105(5): 053901. DOI: https://doi.org/10.1103/physrevlett.105.053901.

    Article  Google Scholar 

  9. SUN Yong, TAN Wei, LI Hong-qiang, et al. Experimental demonstration of a coherent perfect absorber with PT phase transition [J]. Physical Review Letters, 2014, 112(14): 143903. DOI: https://doi.org/10.1103/PhysRevLett.112.143903.

    Article  Google Scholar 

  10. SCHOMERUS H. Quantum noise and self-sustained radiation of PT-symmetric systems [J]. Physical Review Letters, 2010, 104(23): 233601. DOI: https://doi.org/10.1103/PhysRevLett.104.233601.

    Article  Google Scholar 

  11. GUO A, SALAMO G J, DUCHESNE D, et al. Observation of PT-symmetry breaking in complex optical potentials [J]. Physical Review Letters, 2009, 103(9): 093902. DOI: https://doi.org/10.1103/physrevlett.103.093902.

    Article  Google Scholar 

  12. BITTNER S, DIETZ B, GÜNTHER U, et al. PT symmetry and spontaneous symmetry breaking in a microwave billiard [J]. Physical Review Letters, 2012, 108(2): 024101. DOI: https://doi.org/10.1103/PhysRevLett.108.024101.

    Article  Google Scholar 

  13. BENDER C M, BERNTSON B K, PARKER D, et al. Observation of PT phase transition in a simple mechanical system [J]. American Journal of Physics, 2013, 81(3): 173–179. DOI: https://doi.org/10.1119/1.4789549.

    Article  Google Scholar 

  14. LONGHI S, FENG Liang. PT-symmetric microring laserabsorber [J]. Optics Letters, 2014, 39(17): 5026–5029. DOI: https://doi.org/10.1364/OL.39.005026.

    Article  Google Scholar 

  15. FU Yang-yang, XU Ya-dong, CHEN Huan-yang. Zero index metamaterials with PT symmetry in a waveguide system [J]. Optics Express, 2016, 24(2): 1648–1657. DOI: https://doi.org/10.1364/OE.24.001648.

    Article  Google Scholar 

  16. CHONG Y D, GE Li, STONE A D. PT-symmetry breaking and laser-absorber modes in optical scattering systems [J]. Physical Review Letters, 2011, 106(9): 093902. DOI: https://doi.org/10.1103/PhysRevLett.106.093902.

    Article  Google Scholar 

  17. SILFVAST W T. Laser fundamentals [M]. Cambridge: Cambridge University Press, 2004. DOI: https://doi.org/10.1017/cbo9780511616426.

    Book  Google Scholar 

  18. AMBICHL P, MAKRIS K G, GE Li, et al. Breaking of PT symmetry in bounded and unbounded scattering systems [J]. Physical Review X, 2013, 3(4): 041030. DOI: https://doi.org/10.1103/physrevx.3.041030.

    Article  Google Scholar 

  19. RECHTSMAN M C. Optical sensing gets exceptional [J]. Nature, 2017, 548(7666): 161–162. DOI: https://doi.org/10.1038/548161a.

    Article  Google Scholar 

  20. CHEN Wei-jian, KAYA ÖZDEMIR Ş, ZHAO Guang-ming, et al. Exceptional points enhance sensing in an optical microcavity [J]. Nature, 2017, 548(7666): 192–196. DOI: https://doi.org/10.1038/nature23281.

    Article  Google Scholar 

  21. CHEN P Y, JUNG J. PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces [J]. Physical Review Applied, 2016, 5(6): 064018. DOI: https://doi.org/10.1103/physrevapplied.5.064018.

    Article  Google Scholar 

  22. LIN Xiao, YANG Yi, RIVERA N, et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene—Boron nitride heterostructures [J]. PNAS, 2017, 114(26): 6717–6721. DOI: https://doi.org/10.1073/pnas.1701830114.

    Article  Google Scholar 

  23. FLEURY R, SOUNAS D L, ALÙ A. Negative refraction and planar focusing based on parity-time symmetric metasurfaces [J]. Physical Review Letters, 2014, 113(2): 023903. DOI: https://doi.org/10.1103/physrevlett.113.023903.

    Article  Google Scholar 

  24. LIN Z, RAMEZANI H, EICHELKRAUT T, et al. Unidirectional invisibility induced by PT-symmetric periodic structures [J]. Physical Review Letters, 2011, 106(21): 213901. DOI: https://doi.org/10.1103/physrevlett.106.213901.

    Article  Google Scholar 

  25. CHANG Long, JIANG Xiao-shun, HUA Shi-yue, et al. Parity — time symmetry and variable optical isolation in active — passive-coupled microresonators [J]. Nature Photonics, 2014, 8(7): 524–529. DOI: https://doi.org/10.1038/nphoton.2014.133.

    Article  Google Scholar 

  26. FENG Liang, XU Ye-long, FEGADOLLI W S, et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies [J]. Nature Materials, 2013, 12(2): 108–113. DOI: https://doi.org/10.1038/nmat3495.

    Article  Google Scholar 

  27. FARHAT M, YANG Min-ye, YE Zhi-lu, et al. PT-symmetric absorber-laser enables electromagnetic sensors with unprecedented sensitivity [J]. ACS Photonics, 2020, 7(8): 2080–2088. DOI: https://doi.org/10.1021/acsphotonics.0c00514.

    Article  Google Scholar 

  28. YE Zhi-lu, FARHAT M, CHEN P Y. Tunability and switching of Fano and Lorentz resonances in PTX-symmetric electronic systems [J]. Applied Physics Letters, 2020, 117(3): 031101. DOI: https://doi.org/10.1063/5.0014919.

    Article  Google Scholar 

  29. CHEN P Y, SAKHDARI M, HAJIZADEGAN M, et al. Generalized parity — time symmetry condition for enhanced sensor telemetry [J]. Nature Electronics, 2018, 1(5): 297–304. DOI: https://doi.org/10.1038/s41928-018-0072-6.

    Article  Google Scholar 

  30. SAKHDARI M, HAJIZADEGAN M, ZHONG Q, et al. Experimental observation of PT symmetry breaking near divergent exceptional points [J]. Physical Review Letters, 2019, 123(19): 193901. DOI: https://doi.org/10.1103/physrevlett.123.193901.

    Article  Google Scholar 

  31. DONG Zhen-ya, LI Zhi-peng, YANG Feng-yuan, et al. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point [J]. Nature Electronics, 2019, 2(8): 335–342. DOI: https://doi.org/10.1038/s41928-019-0284-4.

    Article  Google Scholar 

  32. SAKHDARI M, HAJIZADEGAN M, LI Yue, et al. Ultrasensitive, parity — time-symmetric wireless reactive and resistive sensors [J]. IEEE Sensors Journal, 2018, 18(23): 9548–9555. DOI: https://doi.org/10.1109/JSEN.2018.2870322.

    Article  Google Scholar 

  33. HAJIZADEGAN M, SAKHDARI M, LIAO Shao-lin, et al. High-sensitivity wireless displacement sensing enabled by PT-symmetric telemetry [J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3445–3449. DOI: https://doi.org/10.1109/TAP.2019.2905892.

    Article  Google Scholar 

  34. SCHINDLER J, LI A, ZHENG M C, et al. Experimental study of active LRC circuits with PT symmetries [J]. Physical Review A, 2011, 84(4): 040101. DOI: https://doi.org/10.1103/physreva.84.040101.

    Article  Google Scholar 

  35. SHI Cheng-zhi, DUBOIS M, CHEN Yun, et al. Accessing the exceptional points of parity — time symmetric acoustics [J]. Nature Communications, 2016, 7: 11110. DOI: https://doi.org/10.1038/ncomms11110.

    Article  Google Scholar 

  36. FLEURY R, SOUNAS D, ALÙ A. An invisible acoustic sensor based on parity — time symmetry [J]. Nature Communications, 2015, 6: 5905. DOI: https://doi.org/10.1038/ncomms6905.

    Article  Google Scholar 

  37. ZHU Xue-feng, RAMEZANI H, SHI Cheng-zhi, et al. PT-symmetric acoustics [J]. Physical Review X, 2014, 4(3): 031042. DOI: https://doi.org/10.1103/physrevx.4.031042.

    Article  Google Scholar 

  38. AURÉGAN Y, PAGNEUX V. PT-symmetric scattering in flow duct acoustics [J]. Physical Review Letters, 2017, 118(17): 174301. DOI: https://doi.org/10.1103/PhysRevLett.118.174301.

    Article  Google Scholar 

  39. HODAEI H, HASSAN A U, WITTEK S, et al. Enhanced sensitivity at higher-order exceptional points [J]. Nature, 2017, 548(7666): 187–191. DOI: https://doi.org/10.1038/nature23280.

    Article  Google Scholar 

  40. MOSTAFAZADEH A. Invisibility and PT symmetry [J]. Physical Review A, 2013, 87: 012103. DOI: https://doi.org/10.1103/physreva.87.012103.

    Article  Google Scholar 

  41. LIU Tuo, ZHU Xue-feng, CHEN Fei, et al. Unidirectional wave vector manipulation in two-dimensional space with an all passive acoustic parity — time-symmetric metamaterials crystal [J]. Physical Review Letters, 2018, 120(12): 124502. DOI: https://doi.org/10.1103/PhysRevLett.120.124502.

    Article  Google Scholar 

  42. FLEURY R, MONTICONE F, ALÙ A. Invisibility and cloaking: Origins, present, and future perspectives [J]. Physical Review Applied, 2015, 4(3): 037001. DOI: https://doi.org/10.1103/physrevapplied.4.037001.

    Article  Google Scholar 

  43. ZHU Xue-feng, FENG Liang, ZHANG Peng, et al. One-way invisible cloak using parity-time symmetric transformation optics [J]. Optics Letters, 2013, 38(15): 2821. DOI: https://doi.org/10.1364/ol.38.002821.

    Article  Google Scholar 

  44. LI Hao-xiang, ROSENDO-LÓPEZ M, ZHU Yi-fan, et al. Ultrathin acoustic parity-time symmetric metasurface cloak [J]. Research, 2019: 8345683. DOI: https://doi.org/10.34133/2019/8345683.

  45. ZYABLOVSKY A A, VINOGRADOV A P, PUKHOV A A, et al. PT-symmetry in optics [J]. Physics-Uspekhi, 2014, 57(11): 1063–1082. DOI: https://doi.org/10.3367/ufne.0184.201411b.1177.

    Article  Google Scholar 

  46. JING H, ÖZDEMIR Ş K, GENG Z, et al. Optomechanically-induced transparency in parity-time-symmetric microresonators [J]. Scientific Reports, 2015, 5: 9663. DOI: https://doi.org/10.1038/srep09663.

    Article  Google Scholar 

  47. ZHANG H, SAIF F, JIAO Y, et al. Loss-induced transparency in optomechanics [J]. Optics Express, 2018, 26(19): 25199–25210. DOI: https://doi.org/10.1364/OE.26.025199.

    Article  Google Scholar 

  48. LONGHI S. PT-symmetric laser absorber [J]. Physical Review A, 2010, 82(3): 031801. DOI: https://doi.org/10.1103/physreva.82.031801.

    Article  Google Scholar 

  49. ÖZDEMIR Ş K, ROTTER S, NORI F, et al. Parity-time symmetry and exceptional points in photonics [J]. Nature Materials, 2019, 18(8): 783–798. DOI: https://doi.org/10.1038/s41563-019-0304-9.

    Article  Google Scholar 

  50. ZHAO Yi-zhe, QING An-yong, MENG Yang, et al. Dualband circular polarizer based on simultaneous anisotropy and chirality in planar metamaterial [J]. Scientific Reports, 2018, 8: 1729. DOI: https://doi.org/10.1038/s41598-017-17976-w.

    Article  Google Scholar 

  51. CHEN Lian-wei, LI Yang, HONG Ming-hui. Total reflection metasurface with pure modulated signal [J]. Advanced Optical Materials, 2019, 7(14): 1801130. DOI: https://doi.org/10.1002/adom.201801130.

    Article  Google Scholar 

  52. FOROUZMAND A, SALARY M M, KAFAIE SHIRMANESH G, et al. Tunable all-dielectric metasurface for phase modulation of the reflected and transmitted light via permittivity tuning of indium tin oxide [J]. Nanophotonics, 2019, 8(3): 415–427. DOI: https://doi.org/10.1515/nanoph-2018-0176.

    Article  Google Scholar 

  53. RADKOVSKAYA A, PETROV P, KIRIUSHECHKINA S, et al. Magnetic metamaterials: Coupling and permeability [J]. Journal of Magnetism and Magnetic Materials, 2018, 459: 187–190. DOI: https://doi.org/10.1016/j.jmmm.2017.11.031.

    Article  Google Scholar 

  54. SHALAEV V M. Optical negative-index metamaterials [J]. Nature Photonics, 2007, 1(1): 41–48. DOI: https://doi.org/10.1038/nphoton.2006.49.

    Article  MathSciNet  Google Scholar 

  55. GERDJIKOV V S, GRAHOVSKI G G, IVANOV R I. The N-wave equations with PT symmetry [J]. Theoretical and Mathematical Physics, 2016, 188(3): 1305–1321. DOI: https://doi.org/10.1134/s0040577916090038.

    Article  MathSciNet  MATH  Google Scholar 

  56. EL-GANAINY R, MAKRIS K G, KHAJAVIKHAN M, et al. Non-Hermitian physics and PT symmetry [J]. Nature Physics, 2018, 14(1): 11–19. DOI: https://doi.org/10.1038/nphys4323.

    Article  Google Scholar 

  57. YANG Min-ye, YE Zhi-lu, FARHAT M, et al. Cascaded PT-symmetric artificial sheets: Multimodal manipulation of self-dual emitter-absorber singularities, and unidirectional and bidirectional reflectionless transparencies [J]. Journal of Physics D: Applied Physics, 2022, 55(8): 085301. DOI: https://doi.org/10.1088/1361-6463/ac3300.

    Article  Google Scholar 

  58. SAKHDARI M, ESTAKHRI N M, BAGCI H, et al. Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures [J]. Physical Review Applied, 2018, 10(2): 024030. DOI: https://doi.org/10.1103/physrevapplied.10.024030.

    Article  Google Scholar 

  59. WONG Z J, XU Ye-long, KIM J, et al. Lasing and anti-lasing in a single cavity [J]. Nature Photonics, 2016, 10(12): 796–801. DOI: https://doi.org/10.1038/nphoton.2016.216.

    Article  Google Scholar 

  60. LI Jia-hua, YU Rong, DING Chun-ling, et al. PT-symmetry-induced evolution of sharp asymmetric line shapes and high-sensitivity refractive index sensors in a three-cavity array [J]. Physical Review A, 2016, 93(2): 023814. DOI: https://doi.org/10.1103/physreva.93.023814.

    Article  Google Scholar 

  61. GU Zhi-yuan, ZHANG Nan, LYU Quan, et al. Experimental demonstration of PT-symmetric stripe lasers [J]. Laser & Photonics Reviews, 2016, 10(4): 588–594. DOI: https://doi.org/10.1002/lpor.201500114.

    Article  Google Scholar 

  62. PENG B, ÖZDEMIR Ş K, ROTTER S, et al. Loss-induced suppression and revival of lasing [J]. Science, 2014, 346(6207): 328–332. DOI: https://doi.org/10.1126/science.1258004.

    Article  Google Scholar 

  63. FENG L, WONG Z J, MA R M, et al. Single-mode laser by parity-time symmetry breaking [J]. Science, 2014, 36: 972–975. DOI: https://doi.org/10.1126/science.1258479.

    Article  Google Scholar 

  64. LIANG G Q, CHONG Y D. Optical resonator analog of a two-dimensional topological insulator [J]. Physical Review Letters, 2013, 110(20): 203904. DOI: https://doi.org/10.1103/PhysRevLett.110.203904.

    Article  Google Scholar 

  65. HOU Zhi-lin, NI Hui-qin, ASSOUAR B. PT-symmetry for elastic negative refraction [J]. Physical Review Applied, 2018, 10(4): 044071. DOI: https://doi.org/10.1103/physrevapplied.10.044071.

    Article  Google Scholar 

  66. MONTICONE F, VALAGIANNOPOULOS C A, ALÙ A. Parity — time symmetric nonlocal metasurfaces: All-angle negative refraction and volumetric imaging [J]. Physical Review X, 2016, 6(4): 041018. DOI: https://doi.org/10.1103/physrevx.6.041018.

    Article  Google Scholar 

  67. DOWNING C A, ZUECO D, MARTÍN-MORENO L. Chiral current circulation and PT symmetry in a trimer of oscillators [J]. ACS Photonics, 2020, 7(12): 3401–3414. DOI: https://doi.org/10.1021/acsphotonics.0c01208.

    Article  Google Scholar 

  68. MA Ji-yang, WEN Jian-ming, DING Shu-lin, et al. Chip-based optical isolator and nonreciprocal parity-time symmetry induced by stimulated Brillouin scattering [J]. Laser & Photonics Reviews, 2020, 14(5): 1900278. DOI: https://doi.org/10.1002/lpor.201900278.

    Article  Google Scholar 

  69. SAKHDARI M, HAJIZADEGAN M, CHEN P Y. Robust extended-range wireless power transfer using a higher-order PT-symmetric platform [J]. Physical Review Research, 2020, 2: 013152. DOI: https://doi.org/10.1103/physrevresearch.2.013152.

    Article  Google Scholar 

  70. YANG Xin, LI Jia-wen, DING Yi-fei, et al. Observation of transient parity-time symmetry in electronic systems [J]. Physical Review Letters, 2022, 128(6): 065701. DOI: https://doi.org/10.1103/physrevlett.128.065701.

    Article  Google Scholar 

  71. RAMEZANI H, SCHINDLER J, ELLIS F M, et al. Bypassing the bandwidth theorem with PT symmetry [J]. Physical Review A, 2012, 85(6): 062122. DOI: https://doi.org/10.1103/physreva.85.062122.

    Article  Google Scholar 

  72. LIU Tuo, ZHU Xue-feng, CHEN Fei, et al. Unidirectional wave vector manipulation in two-dimensional space with an all passive acoustic parity-time-symmetric metamaterials crystal [J]. Physical Review Letters, 2018, 120(12): 124502. DOI: https://doi.org/10.1103/PhysRevLett.120.124502.

    Article  Google Scholar 

  73. WEI Zhi-hao, ZHANG Bo. Transmission range extension of PT-symmetry-based wireless power transfer system [J]. IEEE Transactions on Power Electronics, 2021, 36(10): 11135–11147. DOI: https://doi.org/10.1109/TPEL.2021.3066988.

    Article  Google Scholar 

  74. ASSAWAWORRARIT S, YU Xiao-fang, FAN Shan-hui. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit [J]. Nature, 2017, 546(7658): 387–390. DOI: https://doi.org/10.1038/nature22404.

    Article  Google Scholar 

  75. YANG Min-ye, YE Zhi-lu, ALSAAB N, et al. In-vitro demonstration of ultra-reliable, wireless and batteryless implanted intracranial sensors operated on loci of exceptional points [J]. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16(2): 287–295. DOI: https://doi.org/10.1109/TBCAS.2022.3164697.

    Article  Google Scholar 

  76. YANG Min-ye, YE Zhi-lu, CHEN P Y. A quantum-inspired biotelemetry system for robust and ultrasensitive wireless intracranial pressure monitoring [J]. 2021 IEEE Sensors, 2021: 1–4. DOI: https://doi.org/10.1109/SENSORS47087.2021.9639684.

  77. YANG Min-ye, YE Zhi-lu, FARHAT M, et al. Enhanced radio-frequency sensors based on a self-dual emitter-absorber [J]. Physical Review Applied, 2021, 15: 014026. DOI: https://doi.org/10.1103/physrevapplied.15.014026.

    Article  Google Scholar 

  78. YE Zhi-lu, YANG Min-ye, CHEN P Y. Multi-band parity-time-symmetric wireless power transfer systems [C]//2021 IEEE Wireless Power Transfer Conference. San Diego, CA, USA: IEEE, 2021: 1–4. DOI: https://doi.org/10.1109/WPTC51349.2021.9457925.

    Google Scholar 

  79. YE Zhi-lu, YANG Min-ye, CHEN P Y. Multi-band parity-time-symmetric wireless power transfer systems for ISMband bio-implantable applications [J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6(2): 196–203. DOI: https://doi.org/10.1109/JERM.2021.3120621.

    Article  Google Scholar 

  80. YANG Min-ye, YE Zhi-lu, FARHAT M, et al. Ultrarobust wireless interrogation for sensors and transducers: A non-Hermitian telemetry technique [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1–9. DOI: https://doi.org/10.1109/TIM.2021.3107057.

    Article  Google Scholar 

  81. LANGBEIN W. No exceptional precision of exceptional-point sensors [J]. Physical Review A, 2018, 98(2): 023805. DOI: https://doi.org/10.1103/physreva.98.023805.

    Article  MathSciNet  Google Scholar 

  82. FARHAT M, CHEN P Y, GUENNEAU S, et al. Self-dual singularity through lasing and antilasing in thin elastic plates [J]. Physical Review B, 2021, 103(13): 134101. DOI: https://doi.org/10.1103/physrevb.103.134101.

    Article  Google Scholar 

  83. NORRIS A N, VEMULA C. Scattering of flexural waves on thin plates [J]. Journal of Sound and Vibration, 1995, 181(1): 115–125. DOI: https://doi.org/10.1006/jsvi.1995.0129.

    Article  Google Scholar 

  84. TIMOSHENKO S, WOINOWSKY-KRIEGER S. Theory of plates and shells [M]. New York: CRC Press, 1959. DOI: https://doi.org/10.1201/9781315104621.

    MATH  Google Scholar 

  85. FARHAT M, GUENNEAU S, ENOCH S. Ultrabroadband elastic cloaking in thin plates [J]. Physical Review Letters, 2009, 103(2): 024301. DOI: https://doi.org/10.1103/PhysRevLett.103.024301.

    Article  Google Scholar 

  86. FARHAT M, CHEN P Y, BAĞCı H, et al. Platonic scattering cancellation for bending waves in a thin plate [J]. Scientific Reports, 2014, 4: 4644. DOI: https://doi.org/10.1038/srep04644.

    Article  Google Scholar 

  87. FARHAT M, CHEN P Y, GUENNEAU S, et al. Localized surface plate modes via flexural Mie resonances [J]. Physical Review B, 2017, 95(17): 174201. DOI: https://doi.org/10.1103/physrevb.95.174201.

    Article  Google Scholar 

  88. MOVCHAN A B, MOVCHAN N V, MCPHEDRAN R C. Bloch — Floquet bending waves in perforated thin plates [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2086): 2505–2518. DOI: https://doi.org/10.1098/rspa.2007.1886.

    Article  MathSciNet  MATH  Google Scholar 

  89. FARHAT M, AHMAD W W, KHELIF A, et al. Enhanced acoustic pressure sensors based on coherent perfect absorber-laser effect [J]. Journal of Applied Physics, 2021, 129(10): 104902. DOI: https://doi.org/10.1063/5.0041771.

    Article  Google Scholar 

  90. YANG Liu-yang, LI Yan-peng, FANG Fang, et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography [J]. Opto-Electronic Advances, 2022, 5(6): 200076. DOI: https://doi.org/10.29026/oea.2022.200076.

    Article  Google Scholar 

  91. YE Zhi-lu, YANG Min-ye, ZHU Liang, et al. PTX-symmetric metasurfaces for sensing applications [J]. Frontiers of Optoelectronics, 2021, 14(2): 211–220. DOI: https://doi.org/10.1007/s12200-021-1204-6.

    Article  Google Scholar 

  92. KANANIAN S, ALEXOPOULOS G, POON A S Y. Coupling-independent real-time wireless resistive sensing through nonlinear PT symmetry [J]. Physical Review Applied, 2020, 14(6): 064072. DOI: https://doi.org/10.1103/physrevapplied.14.064072.

    Article  Google Scholar 

  93. ZHOU Bin-bin, DENG Wen-jun, WANG Li-feng, et al. Enhancing the remote distance of LC passive wireless sensors by parity-time symmetry breaking [J]. Physical Review Applied, 2020, 13(6): 064022. DOI: https://doi.org/10.1103/physrevapplied.13.064022.

    Article  Google Scholar 

  94. YE Z L, YANG M Y, CHEN P Y. Metasurface absorber-emitter for humidity sensing [J]. URSI Radio Science Letters, 2021, 3: 1–5. DOI: https://doi.org/10.46620/21-0029.

    Google Scholar 

  95. FANG Yun-tuan, LI Xiao-xue, XIA Jing, et al. Sensing gases by the pole effect of parity-time symmetric coupled resonators [J]. IEEE Sensors Journal, 2019, 19(7): 2533–2539. DOI: https://doi.org/10.1109/jsen.2018.2887084.

    Article  Google Scholar 

  96. CHEN P Y, ALÙ A. Terahertz metamaterial devices based on graphene nanostructures [J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 748–756. DOI: https://doi.org/10.1109/TTHZ.2013.2285629.

    Article  Google Scholar 

  97. LOW T, CHEN P Y, BASOV D N. Superluminal plasmons with resonant gain in population inverted bilayer graphene [J]. Physical Review B, 2018, 98(4): 041403. DOI: https://doi.org/10.1103/physrevb.98.041403.

    Article  Google Scholar 

  98. GUO Tian-jing, ZHU Liang, CHEN Pai-Yen, et al. Tunable terahertz amplification based on photoexcited active graphene hyperbolic metamaterials [J]. Optical Materials Express, 2018, 8(12): 3941. DOI: https://doi.org/10.1364/ome.8.003941.

    Article  Google Scholar 

  99. TAN Xue-bin, YANG Min-ye, ZHU Liang, et al. Ultrasensitive and selective bacteria sensors based on functionalized graphene transistors [J]. IEEE Sensors Journal, 2022, 22(6): 5514–5520. DOI: https://doi.org/10.1109/jsen.2022.3147229.

    Article  Google Scholar 

  100. LIU Y, DONG X, CHEN P. Biological and chemical sensors based on graphene materials [J]. Chemical Society Reviews, 2012, 41(6): 2283–2307. DOI: https://doi.org/10.1039/c1cs15270j.

    Article  Google Scholar 

  101. VISWANATHAN S, NARAYANAN T N, ARAN K, et al. Graphene-protein field effect biosensors: Glucose sensing [J]. Materials Today, 2015, 18(9): 513–522. DOI: https://doi.org/10.1016/j.mattod.2015.04.003.

    Article  Google Scholar 

  102. OHNO Y, MAEHASHI K, YAMASHIRO Y, et al. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption [J]. Nano Letters, 2009, 9(9): 3318–3322. DOI: https://doi.org/10.1021/nl901596m.

    Article  Google Scholar 

  103. WU Zhu-lian, GAO Ming-xuan, WANG Ting-ting, et al. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots [J]. Nanoscale, 2014, 6(7): 3868–3874. DOI: https://doi.org/10.1039/c3nr06353d.

    Article  Google Scholar 

  104. NEMATI E, DEEN M J, MONDAL T. A wireless wearable ECG sensor for long-term applications [J]. IEEE Communications Magazine, 2012, 50(1): 36–43. DOI: https://doi.org/10.1109/MCOM.2012.6122530.

    Article  Google Scholar 

  105. KIM J, PARK J, PARK Y G, et al. A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure [J]. Nature Biomedical Engineering, 2021, 5(7): 772–782. DOI: https://doi.org/10.1038/s41551-021-00719-8.

    Article  Google Scholar 

  106. HAJIZADEGAN M, ZHU Liang, CHEN Pai-Yen. Superdirective leaky radiation from a PT-synthetic metachannel [J]. Optics Express, 2021, 29(8): 12330–12343. DOI: https://doi.org/10.1364/OE.419775.

    Article  Google Scholar 

  107. CHEN Xian-zhong, ZHANG Yan, HUANG Ling-ling, et al. Ultrathin metasurface laser beam shaper [J]. Advanced Optical Materials, 2014, 2(10): 978–982. DOI: https://doi.org/10.1002/adom.201400186.

    Article  Google Scholar 

  108. HAHN C, CHOI Y, YOON J W, et al. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices [J]. Nature Communications, 2016, 7: 12201. DOI: https://doi.org/10.1038/ncomms12201.

    Article  Google Scholar 

  109. SAVOIA S, CASTALDI G, GALDI V, et al. Tunneling of obliquely incident waves throughPT-symmetric epsilon-near-zero bilayers [J]. Physical Review B, 2014, 89(8): 085105. DOI: https://doi.org/10.1103/physrevb.89.085105.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-ye Yang.

Additional information

Contributors

CHEN Pai-Yen and FARHAT Mohamed perceived the idea. YANG Min-ye, YE Zhi-lu and ZHU Liang drafted the manuscript. CHEN Pai-Yen and FARHAT Mohamed provided theoretical support. YE Zhi-lu and ZHU Liang polished the manuscript.

Conflict of interest

YANG Min-ye, YE Zhi-lu, ZHU Liang, FARHAT Mohamed, and CHEN Pai-Yen declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, My., Ye, Zl., Zhu, L. et al. Recent advances in coherent perfect absorber-lasers and their future applications. J. Cent. South Univ. 29, 3203–3216 (2022). https://doi.org/10.1007/s11771-022-5160-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5160-0

Key words

关键词