Abstract
In recent years, peculiar physical phenomena enabled by non-Hermitian systems, especially the parity-time (PT)-symmetric systems, have drawn tremendous research interests. Particularly, special spectral degeneracies known as exceptional points (EPs) and coherent perfect absorber-laser (CPAL) points where zero and infinite large eigenvalues coexist are the most popular topics to be studied. To date, the discussions of EPs that serve as transition boundaries between broken PT-symmetry phase and exact PT-symmetry phase have been intensively presented. However, the theoretical analysis and experimental validations of CPAL points are inadequate. Different from EPs, CPAL points, as a special solution of broken PT-symmetry phase, may exhibit even further counterintuitive physical features, which may have significant implications to study non-Hermitian physics. Here, we review some recent advances of CPAL phenomena in different sub-disciplines of physics, including optics, electronics and electromagnetics, and acoustics. Additionally, we also provide an envision of future directions and applications of CPAL systems.
摘要
近年来,非厄米系统,特别是宇称-时间(PT)对称系统引起的特殊物理现象吸引了许多科研人员。具有光谱退化性质的异常点(EP)和特征值分别为无限大及零的相干完美吸收-激光(CPAL)点是其中最为热门的研究课题。迄今为止,对于作为PT对称系统的破缺相和确定相边界的EP讨论已经有了非常多的成果。然而,针对CPAL点的理论分析和实验验证,相对于EP 来说,仍有不足。与EP 不同,CPAL点作为PT对称系统中破缺相中的一个特殊解,可能会表现出更加违反直觉的物理特征,而这些表现可能对研究非厄米物理学有着重要的意义。本文回顾了在不同物理子学科中关于CPAL现象的一些研究,包括光学、电子和电磁学、以及声学。此外,对于CPAL系统未来可能的发展方向及应用给出了一些设想。
This is a preview of subscription content, access via your institution.
References
BENDER C M, BOETTCHER S. Real spectra in non-Hermitian Hamiltonians having PT symmetry [J]. Physical Review Letters, 1998, 80: 5243. DOI: https://doi.org/10.1103/PhysRevLett.80.5243.
BENDER C M, BRODY D C, JONES H F. Complex extension of quantum mechanics [J]. Physical Review Letters, 2002, 89: 270401. DOI: https://doi.org/10.1103/PhysRevLett.89.270401.
BENDER C M, BOETTCHER S, MEISINGER P N. PT-symmetric quantum mechanics [J]. Journal of Mathematical Physics, 1999, 40(5): 2201–2229. DOI: https://doi.org/10.1063/1.532860.
LÉVAI G, ZNOJIL M. Systematic search for PT-symmetric potentials with real energy spectra [J]. Journal of Physics A: Mathematical and General, 2000, 33: 7165–7180. DOI: https://doi.org/10.1088/0305-4470/33/40/313.
HEISS W. Exceptional points of non-Hermitian operators [J]. Journal of Physics A: Mathematical and General, 2004, 37: 2455. DOI: https://doi.org/10.1088/0305-4470/37/6/034.
BERRY M V. Physics of non-Hermitian degeneracies [J]. Czechoslovak Journal of Physics, 2004, 54: 1039–1047.DOI: https://doi.org/10.1023/B:CJOP.0000044002.05657.04.
MOISEYEV N. Non-hermitian quantum mechanics [M]. Cambridge: Cambridge University Press, 2011. DOI: https://doi.org/10.1017/cbo9780511976186.
CHONG Y D, GE Li, CAO Hui, et al. Coherent perfect absorbers: Time-reversed lasers [J]. Physical Review Letters, 2010, 105(5): 053901. DOI: https://doi.org/10.1103/physrevlett.105.053901.
SUN Yong, TAN Wei, LI Hong-qiang, et al. Experimental demonstration of a coherent perfect absorber with PT phase transition [J]. Physical Review Letters, 2014, 112(14): 143903. DOI: https://doi.org/10.1103/PhysRevLett.112.143903.
SCHOMERUS H. Quantum noise and self-sustained radiation of PT-symmetric systems [J]. Physical Review Letters, 2010, 104(23): 233601. DOI: https://doi.org/10.1103/PhysRevLett.104.233601.
GUO A, SALAMO G J, DUCHESNE D, et al. Observation of PT-symmetry breaking in complex optical potentials [J]. Physical Review Letters, 2009, 103(9): 093902. DOI: https://doi.org/10.1103/physrevlett.103.093902.
BITTNER S, DIETZ B, GÜNTHER U, et al. PT symmetry and spontaneous symmetry breaking in a microwave billiard [J]. Physical Review Letters, 2012, 108(2): 024101. DOI: https://doi.org/10.1103/PhysRevLett.108.024101.
BENDER C M, BERNTSON B K, PARKER D, et al. Observation of PT phase transition in a simple mechanical system [J]. American Journal of Physics, 2013, 81(3): 173–179. DOI: https://doi.org/10.1119/1.4789549.
LONGHI S, FENG Liang. PT-symmetric microring laserabsorber [J]. Optics Letters, 2014, 39(17): 5026–5029. DOI: https://doi.org/10.1364/OL.39.005026.
FU Yang-yang, XU Ya-dong, CHEN Huan-yang. Zero index metamaterials with PT symmetry in a waveguide system [J]. Optics Express, 2016, 24(2): 1648–1657. DOI: https://doi.org/10.1364/OE.24.001648.
CHONG Y D, GE Li, STONE A D. PT-symmetry breaking and laser-absorber modes in optical scattering systems [J]. Physical Review Letters, 2011, 106(9): 093902. DOI: https://doi.org/10.1103/PhysRevLett.106.093902.
SILFVAST W T. Laser fundamentals [M]. Cambridge: Cambridge University Press, 2004. DOI: https://doi.org/10.1017/cbo9780511616426.
AMBICHL P, MAKRIS K G, GE Li, et al. Breaking of PT symmetry in bounded and unbounded scattering systems [J]. Physical Review X, 2013, 3(4): 041030. DOI: https://doi.org/10.1103/physrevx.3.041030.
RECHTSMAN M C. Optical sensing gets exceptional [J]. Nature, 2017, 548(7666): 161–162. DOI: https://doi.org/10.1038/548161a.
CHEN Wei-jian, KAYA ÖZDEMIR Ş, ZHAO Guang-ming, et al. Exceptional points enhance sensing in an optical microcavity [J]. Nature, 2017, 548(7666): 192–196. DOI: https://doi.org/10.1038/nature23281.
CHEN P Y, JUNG J. PT symmetry and singularity-enhanced sensing based on photoexcited graphene metasurfaces [J]. Physical Review Applied, 2016, 5(6): 064018. DOI: https://doi.org/10.1103/physrevapplied.5.064018.
LIN Xiao, YANG Yi, RIVERA N, et al. All-angle negative refraction of highly squeezed plasmon and phonon polaritons in graphene—Boron nitride heterostructures [J]. PNAS, 2017, 114(26): 6717–6721. DOI: https://doi.org/10.1073/pnas.1701830114.
FLEURY R, SOUNAS D L, ALÙ A. Negative refraction and planar focusing based on parity-time symmetric metasurfaces [J]. Physical Review Letters, 2014, 113(2): 023903. DOI: https://doi.org/10.1103/physrevlett.113.023903.
LIN Z, RAMEZANI H, EICHELKRAUT T, et al. Unidirectional invisibility induced by PT-symmetric periodic structures [J]. Physical Review Letters, 2011, 106(21): 213901. DOI: https://doi.org/10.1103/physrevlett.106.213901.
CHANG Long, JIANG Xiao-shun, HUA Shi-yue, et al. Parity — time symmetry and variable optical isolation in active — passive-coupled microresonators [J]. Nature Photonics, 2014, 8(7): 524–529. DOI: https://doi.org/10.1038/nphoton.2014.133.
FENG Liang, XU Ye-long, FEGADOLLI W S, et al. Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies [J]. Nature Materials, 2013, 12(2): 108–113. DOI: https://doi.org/10.1038/nmat3495.
FARHAT M, YANG Min-ye, YE Zhi-lu, et al. PT-symmetric absorber-laser enables electromagnetic sensors with unprecedented sensitivity [J]. ACS Photonics, 2020, 7(8): 2080–2088. DOI: https://doi.org/10.1021/acsphotonics.0c00514.
YE Zhi-lu, FARHAT M, CHEN P Y. Tunability and switching of Fano and Lorentz resonances in PTX-symmetric electronic systems [J]. Applied Physics Letters, 2020, 117(3): 031101. DOI: https://doi.org/10.1063/5.0014919.
CHEN P Y, SAKHDARI M, HAJIZADEGAN M, et al. Generalized parity — time symmetry condition for enhanced sensor telemetry [J]. Nature Electronics, 2018, 1(5): 297–304. DOI: https://doi.org/10.1038/s41928-018-0072-6.
SAKHDARI M, HAJIZADEGAN M, ZHONG Q, et al. Experimental observation of PT symmetry breaking near divergent exceptional points [J]. Physical Review Letters, 2019, 123(19): 193901. DOI: https://doi.org/10.1103/physrevlett.123.193901.
DONG Zhen-ya, LI Zhi-peng, YANG Feng-yuan, et al. Sensitive readout of implantable microsensors using a wireless system locked to an exceptional point [J]. Nature Electronics, 2019, 2(8): 335–342. DOI: https://doi.org/10.1038/s41928-019-0284-4.
SAKHDARI M, HAJIZADEGAN M, LI Yue, et al. Ultrasensitive, parity — time-symmetric wireless reactive and resistive sensors [J]. IEEE Sensors Journal, 2018, 18(23): 9548–9555. DOI: https://doi.org/10.1109/JSEN.2018.2870322.
HAJIZADEGAN M, SAKHDARI M, LIAO Shao-lin, et al. High-sensitivity wireless displacement sensing enabled by PT-symmetric telemetry [J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3445–3449. DOI: https://doi.org/10.1109/TAP.2019.2905892.
SCHINDLER J, LI A, ZHENG M C, et al. Experimental study of active LRC circuits with PT symmetries [J]. Physical Review A, 2011, 84(4): 040101. DOI: https://doi.org/10.1103/physreva.84.040101.
SHI Cheng-zhi, DUBOIS M, CHEN Yun, et al. Accessing the exceptional points of parity — time symmetric acoustics [J]. Nature Communications, 2016, 7: 11110. DOI: https://doi.org/10.1038/ncomms11110.
FLEURY R, SOUNAS D, ALÙ A. An invisible acoustic sensor based on parity — time symmetry [J]. Nature Communications, 2015, 6: 5905. DOI: https://doi.org/10.1038/ncomms6905.
ZHU Xue-feng, RAMEZANI H, SHI Cheng-zhi, et al. PT-symmetric acoustics [J]. Physical Review X, 2014, 4(3): 031042. DOI: https://doi.org/10.1103/physrevx.4.031042.
AURÉGAN Y, PAGNEUX V. PT-symmetric scattering in flow duct acoustics [J]. Physical Review Letters, 2017, 118(17): 174301. DOI: https://doi.org/10.1103/PhysRevLett.118.174301.
HODAEI H, HASSAN A U, WITTEK S, et al. Enhanced sensitivity at higher-order exceptional points [J]. Nature, 2017, 548(7666): 187–191. DOI: https://doi.org/10.1038/nature23280.
MOSTAFAZADEH A. Invisibility and PT symmetry [J]. Physical Review A, 2013, 87: 012103. DOI: https://doi.org/10.1103/physreva.87.012103.
LIU Tuo, ZHU Xue-feng, CHEN Fei, et al. Unidirectional wave vector manipulation in two-dimensional space with an all passive acoustic parity — time-symmetric metamaterials crystal [J]. Physical Review Letters, 2018, 120(12): 124502. DOI: https://doi.org/10.1103/PhysRevLett.120.124502.
FLEURY R, MONTICONE F, ALÙ A. Invisibility and cloaking: Origins, present, and future perspectives [J]. Physical Review Applied, 2015, 4(3): 037001. DOI: https://doi.org/10.1103/physrevapplied.4.037001.
ZHU Xue-feng, FENG Liang, ZHANG Peng, et al. One-way invisible cloak using parity-time symmetric transformation optics [J]. Optics Letters, 2013, 38(15): 2821. DOI: https://doi.org/10.1364/ol.38.002821.
LI Hao-xiang, ROSENDO-LÓPEZ M, ZHU Yi-fan, et al. Ultrathin acoustic parity-time symmetric metasurface cloak [J]. Research, 2019: 8345683. DOI: https://doi.org/10.34133/2019/8345683.
ZYABLOVSKY A A, VINOGRADOV A P, PUKHOV A A, et al. PT-symmetry in optics [J]. Physics-Uspekhi, 2014, 57(11): 1063–1082. DOI: https://doi.org/10.3367/ufne.0184.201411b.1177.
JING H, ÖZDEMIR Ş K, GENG Z, et al. Optomechanically-induced transparency in parity-time-symmetric microresonators [J]. Scientific Reports, 2015, 5: 9663. DOI: https://doi.org/10.1038/srep09663.
ZHANG H, SAIF F, JIAO Y, et al. Loss-induced transparency in optomechanics [J]. Optics Express, 2018, 26(19): 25199–25210. DOI: https://doi.org/10.1364/OE.26.025199.
LONGHI S. PT-symmetric laser absorber [J]. Physical Review A, 2010, 82(3): 031801. DOI: https://doi.org/10.1103/physreva.82.031801.
ÖZDEMIR Ş K, ROTTER S, NORI F, et al. Parity-time symmetry and exceptional points in photonics [J]. Nature Materials, 2019, 18(8): 783–798. DOI: https://doi.org/10.1038/s41563-019-0304-9.
ZHAO Yi-zhe, QING An-yong, MENG Yang, et al. Dualband circular polarizer based on simultaneous anisotropy and chirality in planar metamaterial [J]. Scientific Reports, 2018, 8: 1729. DOI: https://doi.org/10.1038/s41598-017-17976-w.
CHEN Lian-wei, LI Yang, HONG Ming-hui. Total reflection metasurface with pure modulated signal [J]. Advanced Optical Materials, 2019, 7(14): 1801130. DOI: https://doi.org/10.1002/adom.201801130.
FOROUZMAND A, SALARY M M, KAFAIE SHIRMANESH G, et al. Tunable all-dielectric metasurface for phase modulation of the reflected and transmitted light via permittivity tuning of indium tin oxide [J]. Nanophotonics, 2019, 8(3): 415–427. DOI: https://doi.org/10.1515/nanoph-2018-0176.
RADKOVSKAYA A, PETROV P, KIRIUSHECHKINA S, et al. Magnetic metamaterials: Coupling and permeability [J]. Journal of Magnetism and Magnetic Materials, 2018, 459: 187–190. DOI: https://doi.org/10.1016/j.jmmm.2017.11.031.
SHALAEV V M. Optical negative-index metamaterials [J]. Nature Photonics, 2007, 1(1): 41–48. DOI: https://doi.org/10.1038/nphoton.2006.49.
GERDJIKOV V S, GRAHOVSKI G G, IVANOV R I. The N-wave equations with PT symmetry [J]. Theoretical and Mathematical Physics, 2016, 188(3): 1305–1321. DOI: https://doi.org/10.1134/s0040577916090038.
EL-GANAINY R, MAKRIS K G, KHAJAVIKHAN M, et al. Non-Hermitian physics and PT symmetry [J]. Nature Physics, 2018, 14(1): 11–19. DOI: https://doi.org/10.1038/nphys4323.
YANG Min-ye, YE Zhi-lu, FARHAT M, et al. Cascaded PT-symmetric artificial sheets: Multimodal manipulation of self-dual emitter-absorber singularities, and unidirectional and bidirectional reflectionless transparencies [J]. Journal of Physics D: Applied Physics, 2022, 55(8): 085301. DOI: https://doi.org/10.1088/1361-6463/ac3300.
SAKHDARI M, ESTAKHRI N M, BAGCI H, et al. Low-threshold lasing and coherent perfect absorption in generalized PT-symmetric optical structures [J]. Physical Review Applied, 2018, 10(2): 024030. DOI: https://doi.org/10.1103/physrevapplied.10.024030.
WONG Z J, XU Ye-long, KIM J, et al. Lasing and anti-lasing in a single cavity [J]. Nature Photonics, 2016, 10(12): 796–801. DOI: https://doi.org/10.1038/nphoton.2016.216.
LI Jia-hua, YU Rong, DING Chun-ling, et al. PT-symmetry-induced evolution of sharp asymmetric line shapes and high-sensitivity refractive index sensors in a three-cavity array [J]. Physical Review A, 2016, 93(2): 023814. DOI: https://doi.org/10.1103/physreva.93.023814.
GU Zhi-yuan, ZHANG Nan, LYU Quan, et al. Experimental demonstration of PT-symmetric stripe lasers [J]. Laser & Photonics Reviews, 2016, 10(4): 588–594. DOI: https://doi.org/10.1002/lpor.201500114.
PENG B, ÖZDEMIR Ş K, ROTTER S, et al. Loss-induced suppression and revival of lasing [J]. Science, 2014, 346(6207): 328–332. DOI: https://doi.org/10.1126/science.1258004.
FENG L, WONG Z J, MA R M, et al. Single-mode laser by parity-time symmetry breaking [J]. Science, 2014, 36: 972–975. DOI: https://doi.org/10.1126/science.1258479.
LIANG G Q, CHONG Y D. Optical resonator analog of a two-dimensional topological insulator [J]. Physical Review Letters, 2013, 110(20): 203904. DOI: https://doi.org/10.1103/PhysRevLett.110.203904.
HOU Zhi-lin, NI Hui-qin, ASSOUAR B. PT-symmetry for elastic negative refraction [J]. Physical Review Applied, 2018, 10(4): 044071. DOI: https://doi.org/10.1103/physrevapplied.10.044071.
MONTICONE F, VALAGIANNOPOULOS C A, ALÙ A. Parity — time symmetric nonlocal metasurfaces: All-angle negative refraction and volumetric imaging [J]. Physical Review X, 2016, 6(4): 041018. DOI: https://doi.org/10.1103/physrevx.6.041018.
DOWNING C A, ZUECO D, MARTÍN-MORENO L. Chiral current circulation and PT symmetry in a trimer of oscillators [J]. ACS Photonics, 2020, 7(12): 3401–3414. DOI: https://doi.org/10.1021/acsphotonics.0c01208.
MA Ji-yang, WEN Jian-ming, DING Shu-lin, et al. Chip-based optical isolator and nonreciprocal parity-time symmetry induced by stimulated Brillouin scattering [J]. Laser & Photonics Reviews, 2020, 14(5): 1900278. DOI: https://doi.org/10.1002/lpor.201900278.
SAKHDARI M, HAJIZADEGAN M, CHEN P Y. Robust extended-range wireless power transfer using a higher-order PT-symmetric platform [J]. Physical Review Research, 2020, 2: 013152. DOI: https://doi.org/10.1103/physrevresearch.2.013152.
YANG Xin, LI Jia-wen, DING Yi-fei, et al. Observation of transient parity-time symmetry in electronic systems [J]. Physical Review Letters, 2022, 128(6): 065701. DOI: https://doi.org/10.1103/physrevlett.128.065701.
RAMEZANI H, SCHINDLER J, ELLIS F M, et al. Bypassing the bandwidth theorem with PT symmetry [J]. Physical Review A, 2012, 85(6): 062122. DOI: https://doi.org/10.1103/physreva.85.062122.
LIU Tuo, ZHU Xue-feng, CHEN Fei, et al. Unidirectional wave vector manipulation in two-dimensional space with an all passive acoustic parity-time-symmetric metamaterials crystal [J]. Physical Review Letters, 2018, 120(12): 124502. DOI: https://doi.org/10.1103/PhysRevLett.120.124502.
WEI Zhi-hao, ZHANG Bo. Transmission range extension of PT-symmetry-based wireless power transfer system [J]. IEEE Transactions on Power Electronics, 2021, 36(10): 11135–11147. DOI: https://doi.org/10.1109/TPEL.2021.3066988.
ASSAWAWORRARIT S, YU Xiao-fang, FAN Shan-hui. Robust wireless power transfer using a nonlinear parity-time-symmetric circuit [J]. Nature, 2017, 546(7658): 387–390. DOI: https://doi.org/10.1038/nature22404.
YANG Min-ye, YE Zhi-lu, ALSAAB N, et al. In-vitro demonstration of ultra-reliable, wireless and batteryless implanted intracranial sensors operated on loci of exceptional points [J]. IEEE Transactions on Biomedical Circuits and Systems, 2022, 16(2): 287–295. DOI: https://doi.org/10.1109/TBCAS.2022.3164697.
YANG Min-ye, YE Zhi-lu, CHEN P Y. A quantum-inspired biotelemetry system for robust and ultrasensitive wireless intracranial pressure monitoring [J]. 2021 IEEE Sensors, 2021: 1–4. DOI: https://doi.org/10.1109/SENSORS47087.2021.9639684.
YANG Min-ye, YE Zhi-lu, FARHAT M, et al. Enhanced radio-frequency sensors based on a self-dual emitter-absorber [J]. Physical Review Applied, 2021, 15: 014026. DOI: https://doi.org/10.1103/physrevapplied.15.014026.
YE Zhi-lu, YANG Min-ye, CHEN P Y. Multi-band parity-time-symmetric wireless power transfer systems [C]//2021 IEEE Wireless Power Transfer Conference. San Diego, CA, USA: IEEE, 2021: 1–4. DOI: https://doi.org/10.1109/WPTC51349.2021.9457925.
YE Zhi-lu, YANG Min-ye, CHEN P Y. Multi-band parity-time-symmetric wireless power transfer systems for ISMband bio-implantable applications [J]. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2022, 6(2): 196–203. DOI: https://doi.org/10.1109/JERM.2021.3120621.
YANG Min-ye, YE Zhi-lu, FARHAT M, et al. Ultrarobust wireless interrogation for sensors and transducers: A non-Hermitian telemetry technique [J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1–9. DOI: https://doi.org/10.1109/TIM.2021.3107057.
LANGBEIN W. No exceptional precision of exceptional-point sensors [J]. Physical Review A, 2018, 98(2): 023805. DOI: https://doi.org/10.1103/physreva.98.023805.
FARHAT M, CHEN P Y, GUENNEAU S, et al. Self-dual singularity through lasing and antilasing in thin elastic plates [J]. Physical Review B, 2021, 103(13): 134101. DOI: https://doi.org/10.1103/physrevb.103.134101.
NORRIS A N, VEMULA C. Scattering of flexural waves on thin plates [J]. Journal of Sound and Vibration, 1995, 181(1): 115–125. DOI: https://doi.org/10.1006/jsvi.1995.0129.
TIMOSHENKO S, WOINOWSKY-KRIEGER S. Theory of plates and shells [M]. New York: CRC Press, 1959. DOI: https://doi.org/10.1201/9781315104621.
FARHAT M, GUENNEAU S, ENOCH S. Ultrabroadband elastic cloaking in thin plates [J]. Physical Review Letters, 2009, 103(2): 024301. DOI: https://doi.org/10.1103/PhysRevLett.103.024301.
FARHAT M, CHEN P Y, BAĞCı H, et al. Platonic scattering cancellation for bending waves in a thin plate [J]. Scientific Reports, 2014, 4: 4644. DOI: https://doi.org/10.1038/srep04644.
FARHAT M, CHEN P Y, GUENNEAU S, et al. Localized surface plate modes via flexural Mie resonances [J]. Physical Review B, 2017, 95(17): 174201. DOI: https://doi.org/10.1103/physrevb.95.174201.
MOVCHAN A B, MOVCHAN N V, MCPHEDRAN R C. Bloch — Floquet bending waves in perforated thin plates [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463(2086): 2505–2518. DOI: https://doi.org/10.1098/rspa.2007.1886.
FARHAT M, AHMAD W W, KHELIF A, et al. Enhanced acoustic pressure sensors based on coherent perfect absorber-laser effect [J]. Journal of Applied Physics, 2021, 129(10): 104902. DOI: https://doi.org/10.1063/5.0041771.
YANG Liu-yang, LI Yan-peng, FANG Fang, et al. Highly sensitive and miniature microfiber-based ultrasound sensor for photoacoustic tomography [J]. Opto-Electronic Advances, 2022, 5(6): 200076. DOI: https://doi.org/10.29026/oea.2022.200076.
YE Zhi-lu, YANG Min-ye, ZHU Liang, et al. PTX-symmetric metasurfaces for sensing applications [J]. Frontiers of Optoelectronics, 2021, 14(2): 211–220. DOI: https://doi.org/10.1007/s12200-021-1204-6.
KANANIAN S, ALEXOPOULOS G, POON A S Y. Coupling-independent real-time wireless resistive sensing through nonlinear PT symmetry [J]. Physical Review Applied, 2020, 14(6): 064072. DOI: https://doi.org/10.1103/physrevapplied.14.064072.
ZHOU Bin-bin, DENG Wen-jun, WANG Li-feng, et al. Enhancing the remote distance of LC passive wireless sensors by parity-time symmetry breaking [J]. Physical Review Applied, 2020, 13(6): 064022. DOI: https://doi.org/10.1103/physrevapplied.13.064022.
YE Z L, YANG M Y, CHEN P Y. Metasurface absorber-emitter for humidity sensing [J]. URSI Radio Science Letters, 2021, 3: 1–5. DOI: https://doi.org/10.46620/21-0029.
FANG Yun-tuan, LI Xiao-xue, XIA Jing, et al. Sensing gases by the pole effect of parity-time symmetric coupled resonators [J]. IEEE Sensors Journal, 2019, 19(7): 2533–2539. DOI: https://doi.org/10.1109/jsen.2018.2887084.
CHEN P Y, ALÙ A. Terahertz metamaterial devices based on graphene nanostructures [J]. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 748–756. DOI: https://doi.org/10.1109/TTHZ.2013.2285629.
LOW T, CHEN P Y, BASOV D N. Superluminal plasmons with resonant gain in population inverted bilayer graphene [J]. Physical Review B, 2018, 98(4): 041403. DOI: https://doi.org/10.1103/physrevb.98.041403.
GUO Tian-jing, ZHU Liang, CHEN Pai-Yen, et al. Tunable terahertz amplification based on photoexcited active graphene hyperbolic metamaterials [J]. Optical Materials Express, 2018, 8(12): 3941. DOI: https://doi.org/10.1364/ome.8.003941.
TAN Xue-bin, YANG Min-ye, ZHU Liang, et al. Ultrasensitive and selective bacteria sensors based on functionalized graphene transistors [J]. IEEE Sensors Journal, 2022, 22(6): 5514–5520. DOI: https://doi.org/10.1109/jsen.2022.3147229.
LIU Y, DONG X, CHEN P. Biological and chemical sensors based on graphene materials [J]. Chemical Society Reviews, 2012, 41(6): 2283–2307. DOI: https://doi.org/10.1039/c1cs15270j.
VISWANATHAN S, NARAYANAN T N, ARAN K, et al. Graphene-protein field effect biosensors: Glucose sensing [J]. Materials Today, 2015, 18(9): 513–522. DOI: https://doi.org/10.1016/j.mattod.2015.04.003.
OHNO Y, MAEHASHI K, YAMASHIRO Y, et al. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption [J]. Nano Letters, 2009, 9(9): 3318–3322. DOI: https://doi.org/10.1021/nl901596m.
WU Zhu-lian, GAO Ming-xuan, WANG Ting-ting, et al. A general quantitative pH sensor developed with dicyandiamide N-doped high quantum yield graphene quantum dots [J]. Nanoscale, 2014, 6(7): 3868–3874. DOI: https://doi.org/10.1039/c3nr06353d.
NEMATI E, DEEN M J, MONDAL T. A wireless wearable ECG sensor for long-term applications [J]. IEEE Communications Magazine, 2012, 50(1): 36–43. DOI: https://doi.org/10.1109/MCOM.2012.6122530.
KIM J, PARK J, PARK Y G, et al. A soft and transparent contact lens for the wireless quantitative monitoring of intraocular pressure [J]. Nature Biomedical Engineering, 2021, 5(7): 772–782. DOI: https://doi.org/10.1038/s41551-021-00719-8.
HAJIZADEGAN M, ZHU Liang, CHEN Pai-Yen. Superdirective leaky radiation from a PT-synthetic metachannel [J]. Optics Express, 2021, 29(8): 12330–12343. DOI: https://doi.org/10.1364/OE.419775.
CHEN Xian-zhong, ZHANG Yan, HUANG Ling-ling, et al. Ultrathin metasurface laser beam shaper [J]. Advanced Optical Materials, 2014, 2(10): 978–982. DOI: https://doi.org/10.1002/adom.201400186.
HAHN C, CHOI Y, YOON J W, et al. Observation of exceptional points in reconfigurable non-Hermitian vector-field holographic lattices [J]. Nature Communications, 2016, 7: 12201. DOI: https://doi.org/10.1038/ncomms12201.
SAVOIA S, CASTALDI G, GALDI V, et al. Tunneling of obliquely incident waves throughPT-symmetric epsilon-near-zero bilayers [J]. Physical Review B, 2014, 89(8): 085105. DOI: https://doi.org/10.1103/physrevb.89.085105.
Author information
Authors and Affiliations
Corresponding author
Additional information
Contributors
CHEN Pai-Yen and FARHAT Mohamed perceived the idea. YANG Min-ye, YE Zhi-lu and ZHU Liang drafted the manuscript. CHEN Pai-Yen and FARHAT Mohamed provided theoretical support. YE Zhi-lu and ZHU Liang polished the manuscript.
Conflict of interest
YANG Min-ye, YE Zhi-lu, ZHU Liang, FARHAT Mohamed, and CHEN Pai-Yen declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Yang, My., Ye, Zl., Zhu, L. et al. Recent advances in coherent perfect absorber-lasers and their future applications. J. Cent. South Univ. 29, 3203–3216 (2022). https://doi.org/10.1007/s11771-022-5160-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11771-022-5160-0