Skip to main content
Log in

Effects of electron beam lithography process parameters on structure of silicon optical waveguide based on SOI

基于SOI的硅光波导电子束光刻工艺参数对结构的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Electron beam lithography (EBL) is a key technology in the fabrication of nanoscale silicon optical waveguide. The influence of exposure dose, the main process parameter of EBL, on the structure profile of poly-methyl methacrylate (PMMA) after development was studied using a silicon on insulator (SOI) wafer with 220 nm top silicon as the substrate. The relationship between exposure dose and structure pattern width after development was analyzed according to the measurement results. The optimum exposure dose of 220 µC/cm2 was found to obtain a final structure consistent with the designed mask value through subsequent processes. At the same time, according to the image segmentation curve tracking technology, the contour extraction process of the dose test results was carried out, and the relationship among mask design value, exposure dose and two-dimensional roughness of boundary contour was analyzed, which can provide reference for the subsequent electron beam lithography of the same substrate material.

摘要

电子束光刻是纳米级硅光波导制作过程的关键工艺,本文以顶层硅220 nm的SOI晶圆为衬底研 究了电子束光刻的主要工艺参数—曝光剂量对显影后的PMMA(聚甲基丙烯酸甲酯)正性抗蚀剂结构轮 廓的影响,根据测量结果分析曝光剂量与显影后结构图形宽度的关系,找到最佳曝光剂量220 μC/cm2 以便通过后续工艺得出与掩膜尺寸一致的最终结构。同时,依据图像分割曲线跟踪技术对剂量测试结 果图进行轮廓提取处理,分析掩膜设计值和曝光剂量与边界轮廓二维粗糙度之间的关系,为后续相同 衬底材料 的电子束光刻提供参考意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SHACHAM A, BERGMAN K, CARLONI L P. Photonic networks-on-chip for future generations of chip multiprocessors [J]. IEEE Transactions on Computers, 2008, 57(9): 1246–1260. DOI: https://doi.org/10.1109/TC.2008.78.

    Article  MathSciNet  Google Scholar 

  2. SMALL B A, LEE B G, BERGMAN K, et al. Multiple-wavelength integrated photonic networks based on microring resonator devices [J]. The Journal of Optical Networking, 2007, 6(2): 112–120.

    Article  Google Scholar 

  3. GUNN C. CMOS photonics for high-speed interconnects [J]. IEEE Micro, 2006, 26(2): 58–66. DOI: https://doi.org/10.1109/MM.2006.32.

    Article  Google Scholar 

  4. JALALI B, FATHPOUR S. Silicon photonics [J]. Journal of Lightwave Technology, 2006, 24(12): 4600–4615. DOI: https://doi.org/10.1109/JLT.2006.885782.

    Article  Google Scholar 

  5. GRILLOT F, VIVIEN L, LAVAL S, et al. Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides [J]. Journal of Lightwave Technology, 2006, 24(2): 891–896. DOI: https://doi.org/10.1109/JLT.2005.861939.

    Article  Google Scholar 

  6. VLASOV Y, MCNAB S. Losses in single-mode silicon-on-insulator strip waveguides and bends [J]. Optics Express, 2004, 12(8): 1622–1631. DOI: https://doi.org/10.1364/opex.12.001622.

    Article  Google Scholar 

  7. VIVIEN L, LAVAL S, CASSAN E, et al. 2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers [J]. Journal of Lightwave Technology, 2003, 21(10): 2429–2433. DOI: https://doi.org/10.1109/JLT.2003.817692.

    Article  Google Scholar 

  8. MEKIS A, GLOECKNER S, MASINI G, et al. A grating-coupler-enabled CMOS photonics platform [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(3): 597–608. DOI: https://doi.org/10.1109/JSTQE.2010.2086049.

    Article  Google Scholar 

  9. ZHENG Yu, GAO Piao-piao, XIA Bing-xin, et al. Experimental research on silicon optical waveguide and focus coupling grating [C]//IEEE 3rd Optoelectronics Global Conference. Shenzhen, China: IEEE, 2018: 72–75. DOI: https://doi.org/10.1109/OGC.2018.8529856.

    Google Scholar 

  10. MEKIS A, ABDALLA S, FOLTZ D, et al. A CMOS photonics platform for high-speed optical interconnects [C]//IEEE Photonics Conference 2012. Burlingame, CA, USA: IEEE, 2012: 356–357. DOI: https://doi.org/10.1109/IPCon.2012.6358639.

    Google Scholar 

  11. ZAOUI W S, KUNZE A, VOGEL W, et al. Bridging the gap between optical fibers and silicon photonic integrated circuits [J]. Optics Express, 2014, 22(2): 1277–1286. DOI: https://doi.org/10.1364/OE.22.001277.

    Article  Google Scholar 

  12. REED G T, MASANOVIC G Z, HEADLEY W R, et al. Small devices in SOI: fabrication and design issues [C]//Optoelectric Integration Silicon. Bellingham WA: SPIE, 2004.

    Google Scholar 

  13. MENON R, PATEL A, GIL D, et al. Maskless lithography [J]. Materials Today, 2005, 8(2): 26–33. DOI: https://doi.org/10.1016/S1369-7021(05)00699-1.

    Article  Google Scholar 

  14. ALTISSIMO M. E-beam lithography for micronanofabrication [J]. Biomicrofluidics, 2010, 4(2): 026503. DOI: https://doi.org/10.1063/1.3437589.

    Article  Google Scholar 

  15. KOSTIC I, VUTOVA K, BENCUROVA A, et al. Electron beam lithography method for high-resolution nanofabrication [J]. International Scientific Journal: Machines. Technologies. Materials, 2017, 3: 106–109.

    Google Scholar 

  16. PRINZEN A, WALDOW M, KURZ H. Fabrication tolerances of SOI based directional couplers and ring resonators [J]. Optics Express, 2013, 21(14): 17212–17220. DOI: https://doi.org/10.1364/OE.21.017212.

    Article  Google Scholar 

  17. ABDUL RAHMAN M S B, ATER F S S, MOHAMMAD R. Effects of random sidewall roughness on optical power splitter [J]. Optical Engineering, 2015, 54: 055103. DOI: https://doi.org/10.1117/1.OE.54.5.055103.

    Article  Google Scholar 

  18. BARWICZ T, HAUS H A. Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides [J]. Journal of Lightwave Technology, 2005, 23(9): 2719–2732. DOI: https://doi.org/10.1109/JLT.2005.850816.

    Article  Google Scholar 

  19. RICKMAN A G, REED G T, NAMAVAR F. Silicon-on-insulator optical rib waveguide loss and mode characteristics [J]. Journal of Lightwave Technology, 1994, 12(10): 1771–1776. DOI: https://doi.org/10.1109/50.337489.

    Article  Google Scholar 

  20. GNAN M, THOMS S, MACINTYRE D S, et al. Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist [J]. Electronics Letters, 2008, 44(2): 115–116.

    Article  Google Scholar 

  21. LEE K K, LIM D R, KIMERLING L C, et al. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction [J]. Optics Letters, 2001, 26(23): 1888–1890. DOI: https://doi.org/10.1364/ol.26.001888.

    Article  Google Scholar 

  22. HU Zhong-xiang, ZHU Lei, TENG Jia-xu, et al. Evaluation of three-dimensional surface roughness parameters based on digital image processing [J]. The International Journal of Advanced Manufacturing Technology, 2009, 40(3–4): 342–348. DOI: https://doi.org/10.1007/s00170-007-1357-5.

    Google Scholar 

  23. LADOUCEUR F, LOVE J, SENDEN T. Measurement of surface roughness in buried channel waveguides [J]. Electronics Letters, 1992, 28: 1321–1322. DOI: https://doi.org/10.1049/EL%3A19920839.

    Article  Google Scholar 

  24. JANG J H, ZHAO W, BAE J W, et al. Direct measurement of nanoscale sidewall roughness of optical waveguides using an atomic force microscope [J]. Applied Physics Letters, 2003, 83(20): 4116–4118. DOI: https://doi.org/10.1063/1.1627480.

    Article  Google Scholar 

  25. WAHLBRINK T, MOLLENHAUER T, GEORGIEV Y M, et al. Highly selective etch process for silicon-on-insulator nano-devices [J]. Microelectronic Engineering, 2005, 78–79: 212–217. DOI: https://doi.org/10.1016/j.mee.2004.12.029.

    Article  Google Scholar 

  26. WELCH C C, GOODYEAR A L, WAHLBRINK T, et al. Silicon etch process options for micro- and nanotechnology using inductively coupled plasmas [J]. Microelectronic Engineering, 2006, 83(4–9): 1170–1173. DOI: https://doi.org/10.1016/j.mee.2006.01.079.

    Article  Google Scholar 

  27. KOSTIC I, VUTOVA K, KOLEVA E, et al. PMMA resist profile and proximity effect dependence on the electron-beam lithography process parameters [J]. Journal of Physics: Conference Series, 2020, 1491(1): 12015.

    Google Scholar 

  28. YOSHIZAWA M, MORIYA S. Quantitative factor analysis of resolution limit in electron beam lithography using the edge roughness evaluation method [J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2000, 18: 3105–3110. DOI: https://doi.org/10.1116/1.1319844.

    Article  Google Scholar 

  29. SPARACIN D K, SPECTOR S J, KIMERLING L C. Silicon waveguide sidewall smoothing by wet chemical oxidation [J]. Journal of Lightwave Technology, 2005, 23(8): 2455–2461. DOI: https://doi.org/10.1109/JLT.2005.851328.

    Article  Google Scholar 

  30. ZHENG Y, GAO P, JIANG L, et al. Surface morphology of silicon waveguide after Reactive Ion Etching (RIE) [J]. Coatings, 2019, 9(8): 478.

    Article  Google Scholar 

Download references

Funding

Project(52175445) supported by the National Natural Science Foundation of China; Project(ZZYJKT2020-09) supported by the State Key Laboratory of High Performance Complex Manufacturing (Central South University), China; Projects (2020JJ4247, 2022JJ30743) supported by the Natural Foundation of Hunan Province, China; Project(1053320190337) supported by the Fundamental Research Funds for the Central University, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piao-piao Gao  (郜飘飘).

Additional information

Contributors

ZHENG Yu developed the overarching research goals and edited the draft of manuscript. GAO Piao-piao proposed experimental methods, implemented verification, and wrote the manuscript. TANG Xin conducted the literature review and edited the draft of manuscript. LIU Jian-zhe edited the manuscript. DUAN Ji-an provided the project administration and funding acquisition.

Conflict of interest

ZHENG Yu, GAO Piao-piao, TANG Xin, LIU Jian-zhe and DUAN Ji-an declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y., Gao, Pp., Tang, X. et al. Effects of electron beam lithography process parameters on structure of silicon optical waveguide based on SOI. J. Cent. South Univ. 29, 3335–3345 (2022). https://doi.org/10.1007/s11771-022-5152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5152-0

Key words

关键词

Navigation