Skip to main content
Log in

Polymer nanocomposite dielectrics with high electrocaloric effect for flexible solid-state cooling devices

高性能电卡效应纳米复合电介质用于柔性固态制冷器件

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Nanocomposite dielectrics show great promising application in developing next generation wearable all-solid-state cooling devices owing to the possessed advantages of high cooling efficiency, light-weight and small volume without the induced greenhouse effect or serious harm to ozone layer in the exploited refrigerants. However, low electrocaloric strength in nanocomposite dielectric is severely restricting its wide-spread application because of high applied operating voltage to improve electrocaloric effect. After addressing the chosen optimized ferroelectric ceramic and ferroelectric polymer matrix in conjunction with the analysis of crucial parameters, recent progress of electrocaloric effect (ECE) in polymer nanocomposites has been considerably reviewed. Subsequently, prior to proposing the conceptual design and devices/systems in electrocaloric nanocomposites, the existing developed devices/systems are reviewed. Finally, conclusions and prospects are conducted, including the aspects of materials chosen, structural design and key issues to be considered in improving electrocaloric effect of polymer nanocomposite dielectrics for flexible solidstate cooling devices.

摘要

纳米复合电介质具有制冷效率高、重量轻、体积小、不产生温室效应、对臭氧层无严重危害等优异性能,在开发下一代可穿戴全固态制冷器件方面具有广阔的应用前景。然而,纳米复合电介质的低电卡强度严重限制了其广泛应用,通常需要高加载电压来改善其电卡效应。首先,通过对铁电陶瓷和铁电聚合物基体的优化选取及电卡性能重要参数进行分析,介绍了聚合物纳米复合材料电卡效应的最新研究进展。随后,对现有的器件/制冷系统进行了分析,系统综述了围绕电卡纳米复合材料进行的器件概念设计及系统优化设计。最后,从材料选择、结构设计以及改善柔性固态制冷器件方面,围绕聚合物纳米复合电介质仍需考虑的主要问题进行了总结,并对其发展前景进行了展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VALANT M. Electrocaloric materials for future solid-state refrigeration technologies [J]. Progress in Materials Science, 2012, 57(6): 980–1009. DOI: https://doi.org/10.1016/j.pmatsci.2012.02.001.

    Article  Google Scholar 

  2. HU Hai-long, ZHANG Fan, LUO Shi-bin, et al. Electrocaloric effect in relaxor ferroelectric polymer nanocomposites for solid-state cooling [J]. Journal of Materials Chemistry A, 2020, 8(33): 16814–16830. DOI: https://doi.org/10.1039/d0ta04465b.

    Article  Google Scholar 

  3. LIU Min, YU Bing-feng. Development of magnetocaloric materials in room temperature magnetic refrigeration application in recent six years [J]. Journal of Central South University of Technology, 2009, 16(1): 1–12. DOI: https://doi.org/10.1007/s11771-009-0001-y.

    Article  MathSciNet  Google Scholar 

  4. GOETZLER W, GUERNSEY M, YOUNG J, et al. The future of air conditioning for buildings — executive summary [R]. Office of Scientific and Technical Information (OSTI), 2016. DOI: https://doi.org/10.2172/1326540.

  5. ZHANG Tian, QIAN Xiao-shi, GU Hai-ming, et al. An electrocaloric refrigerator with direct solid to solid regeneration [J]. Applied Physics Letters, 2017, 110(24): 243503. DOI: https://doi.org/10.1063/1.4986508.

    Article  Google Scholar 

  6. YU Xiao-hui, ZHANG Yu-feng, ZHANG Yan, et al. Intelligent prediction on performance of high-temperature heat pump systems using different refrigerants [J]. Journal of Central South University, 2018, 25(11): 2754–2765. DOI: https://doi.org/10.1007/s11771-018-3951-0.

    Article  Google Scholar 

  7. MA Ru-jun, ZHANG Zi-yang, TONG K, et al. Highly efficient electrocaloric cooling with electrostatic actuation [J]. Science, 2017, 357(6356): 1130–1134. DOI: https://doi.org/10.1126/science.aan5980.

    Article  Google Scholar 

  8. MISCHENKO A S, ZHANG Q, SCOTT J F, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3 [J]. Science, 2006, 311(5765): 1270–1271. DOI: https://doi.org/10.1002/chin.200623007.

    Article  Google Scholar 

  9. NEESE B, CHU Bao-jin, LU Sheng-guo, et al. Large electrocaloric effect in ferroelectric polymers near room temperature [J]. Science, 2008, 321(5890): 821–823. DOI: https://doi.org/10.1126/science.1159655.

    Article  Google Scholar 

  10. SHI Jun-ye, HAN Dong-lin, LI Zi-chao, et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration [J]. Joule, 2019, 3(5): 1200–1225. DOI: https://doi.org/10.1016/j.joule.2019.03.021.

    Article  Google Scholar 

  11. SHAN Dong-liang, PAN Kai, LIU Yun-ya, et al. High fidelity direct measurement of local electrocaloric effect by scanning thermal microscopy [J]. Nano Energy, 2020, 67: 104203. DOI: https://doi.org/10.1016/j.nanoen.2019.104203.

    Article  Google Scholar 

  12. NAIR B, USUI T, CROSSLEY S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range [J]. Nature, 2019, 575(7783): 468–472. DOI: https://doi.org/10.1038/s41586-019-1634-0.

    Article  Google Scholar 

  13. SLADE M. The future of cooling–Opportunities for energy efficient air conditioning [R]. IEA (Report), 2018.

  14. SI Meng-wei, SAHA A K, LIAO Pai-ying, et al. Room-temperature electrocaloric effect in layered ferroelectric CuInP2S6 for solid-state refrigeration [J]. ACS Nano, 2019, 13(8): 8760–8765. DOI: https://doi.org/10.1021/acsnano.9b01491.

    Article  Google Scholar 

  15. SCOTT J F. Electrocaloric materials [J]. Annual Review of Materials Research, 2011, 41: 229–240. DOI: https://doi.org/10.1146/annurev-matsci-062910-100341.

    Article  Google Scholar 

  16. ZHANG Guang-zu, ZHANG Xiao-shan, YANG Tian-nan, et al. Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured Barium strontium titanates [J]. ACS Nano, 2015, 9(7): 7164–7174. DOI: https://doi.org/10.1021/acsnano.5b03371.

    Article  Google Scholar 

  17. HU Hai-long, ZHANG Fan, LUO Shi-bin, et al. Recent advances in rational design of polymer nanocomposite dielectrics for energy storage [J]. Nano Energy, 2020, 74: 104844. DOI: https://doi.org/10.1016/j.nanoen.2020.104844.

    Article  Google Scholar 

  18. QIAN Jian-feng, PENG Ren-ci, SHEN Zhong-hui, et al. Interfacial coupling boosts giant electrocaloric effects in relaxor polymer nanocomposites: In situ characterization and phase-field simulation [J]. Advanced Materials, 2019, 31(5): 1801949. DOI: https://doi.org/10.1002/adma.201801949.

    Google Scholar 

  19. LU Sheng-guo, ZHANG Qi-ming. Electrocaloric materials for solid-state refrigeration [J]. Advanced Materials, 2009, 21(19): 1983–1987. DOI: https://doi.org/10.1002/adma.200802902.

    Article  Google Scholar 

  20. PENG Biao-lin, FAN Hui-qing, ZHANG Qi. A giant electrocaloric effect in nanoscale antiferroelectric and ferroelectric phases coexisting in a relaxor Pb0.8Ba0.2ZrO3 thin film at room temperature [J]. Advanced Functional Materials, 2013, 23(23): 2987–2992. DOI: https://doi.org/10.1002/adfm.201202525.

    Article  Google Scholar 

  21. MOYA X, DEFAY E, HEINE V, et al. Too cool to work [J]. Nature Physics, 2015, 11(3): 202–205. DOI: https://doi.org/10.1038/nphys3271.

    Article  Google Scholar 

  22. JIAN Xiao-dong, LU Biao, LI Dan-dan, et al. Enhanced electrocaloric effect in Sr2+-modified lead-free BaZrxTi1−xO3 ceramics [J]. ACS Applied Materials & Interfaces, 2019, 11(22): 20167–20173. DOI: https://doi.org/10.1021/acsami.9b04036.

    Article  Google Scholar 

  23. SHIRSATH S E, CAZORLA C, LU Teng, et al. Interfacecharge induced giant electrocaloric effect in lead free ferroelectric thin-film bilayers [J]. Nano Letters, 2020, 20(2): 1262–1271. DOI: https://doi.org/10.1021/acs.nanolett.9b04727.

    Article  Google Scholar 

  24. ROŽIČ B, LU S G, KUTNJAK Z, et al. Electrocaloric effect in the relaxor ferroelectric terpolymer P(VDF-TrFE-CFE) [J]. Ferroelectrics, 2011, 422(1): 81–85. DOI: https://doi.org/10.1080/00150193.2011.594743.

    Article  Google Scholar 

  25. CHEN Xiang-zhong, QIAN Xiao-shi, LI Xin-yu, et al. Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene)-based terpolymer/copolymer blends [J]. Applied Physics Letters, 2012, 100(22): 222902. DOI: https://doi.org/10.1063/1.4722932.

    Article  Google Scholar 

  26. JIANG Jian-yong, SHEN Zhong-hui, QIAN Jian-feng, et al. Synergy of micro-/mesoscopic interfaces in multilayered polymer nanocomposites induces ultrahigh energy density for capacitive energy storage [J]. Nano Energy, 2019, 62: 220–229. DOI: https://doi.org/10.1016/j.nanoen.2019.05.038.

    Article  Google Scholar 

  27. ZHANG Xin, JIANG Jian-yong, SHEN Zhong-hui, et al. Polymer nanocomposites with ultrahigh energy density and high discharge efficiency by modulating their nanostructures in three dimensions [J]. Advanced Materials, 2018, 30(16): 1707269. DOI: https://doi.org/10.1002/adma.201707269.

    Article  Google Scholar 

  28. ZHANG Guang-zu, FAN Bao-yan, ZHAO Peng, et al. Ferroelectric polymer nanocomposites with complementary nanostructured fillers for electrocaloric cooling with high power density and great efficiency [J]. ACS Applied Energy Materials, 2018, 1(3): 1344–1354. DOI: https://doi.org/10.1021/acsaem.8b00052.

    Article  Google Scholar 

  29. YANG Lu, QIAN Xiao-shi, KOO C, et al. Graphene enabled percolative nanocomposites with large electrocaloric efficient under low electric fields over a broad temperature range [J]. Nano Energy, 2016, 22: 461–467. DOI: https://doi.org/10.1016/j.nanoen.2016.02.026.

    Article  Google Scholar 

  30. ZHANG Guang-zu, LI Qi, GU Hai-ming, et al. Ferroelectric polymer nanocomposites for room-temperature electrocaloric refrigeration [J]. Advanced Materials, 2015, 27(8): 1450–1454. DOI: https://doi.org/10.1002/adma.201404591.

    Article  Google Scholar 

  31. LI Qi, ZHANG Guang-zu, ZHANG Xiao-shan, et al. Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy [J]. Advanced Materials, 2015, 27(13): 2236–2241. DOI: https://doi.org/10.1002/adma.201405495.

    Article  Google Scholar 

  32. ZHANG Guang-zu, WENG Ling-xi, HU Zhao-yao, et al. Nanoconfinement-induced giant electrocaloric effect in ferroelectric polymer nanowire array integrated with aluminum oxide membrane to exhibit record cooling power density [J]. Advanced Materials, 2019, 31(8): 1806642. DOI: https://doi.org/10.1002/adma.201806642.

    Article  Google Scholar 

  33. CHEN Yu-qi, QIAN Jian-feng, YU Jin-yao, et al. An all-scale hierarchical architecture induces colossal room-temperature electrocaloric effect at ultralow electric field in polymer nanocomposites [J]. Advanced Materials, 2020, 32(30): 1907927. DOI: https://doi.org/10.1002/adma.201907927.

    Article  Google Scholar 

  34. ISAAC M, van VUUREN D P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change [J]. Energy Policy, 2009, 37(2): 507–521. DOI: https://doi.org/10.1016/j.enpol.2008.09.051.

    Article  Google Scholar 

  35. ZHANG Guang-zu, ZHANG Xiao-shan, HUANG Hou-bing, et al. Toward wearable cooling devices: Highly flexible electrocaloric Ba0.67Sr0.33TiO3 nanowire arrays [J]. Advanced Materials, 2016, 28(24): 4811–4816. DOI: https://doi.org/10.1002/adma.201506118.

    Article  Google Scholar 

  36. VATS G, KUMAR A, ORTEGA N, et al. Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures [J]. Energy & Environmental Science, 2016, 9(4): 1335–1345. DOI: https://doi.org/10.1039/c5ee03641k.

    Article  Google Scholar 

  37. ZHU Ying-ke, ZHU Yu-jie, HUANG Xing-yi, et al. High energy density polymer dielectrics interlayered by assembled boron nitride nanosheets [J]. Advanced Energy Materials, 2019, 9(36): 1901826. DOI: https://doi.org/10.1002/aenm.201901826.

    Article  Google Scholar 

  38. ZHAO Chun-lin, YANG Jun-lin, HUANG Yan-li, et al. Broad-temperature-span and large electrocaloric effect in lead-free ceramics utilizing successive and metastable phase transitions [J]. Journal of Materials Chemistry A, 2019, 7(44): 25526–25536. DOI: https://doi.org/10.1039/c9ta10164k.

    Article  Google Scholar 

  39. LU Yu-chen, YU Jun-yi, HUANG Jing-yu, et al. Enhanced electrocaloric effect for refrigeration in lead-free polymer composite films with an optimal filler loading [J]. Applied Physics Letters, 2019, 114(23): 233901. DOI: https://doi.org/10.1063/1.5093968.

    Article  Google Scholar 

  40. GRÜNEBOHM A, MA Yang-bin, MARATHE M, et al. Origins of the inverse electrocaloric effect [J]. Energy Technology (Weinheim, Germany), 2018, 6(8): 1491–1511. DOI: https://doi.org/10.1002/ente.201800166.

    Google Scholar 

  41. ROSE M C, COHEN R E. Giant electrocaloric effect around Tc [J]. Physical Review Letters, 2012, 109(18): 187604. DOI: https://doi.org/10.1103/PhysRevLett.109.187604.

    Article  Google Scholar 

  42. MOYA X, KAR-NARAYAN S, MATHUR N D. Caloric materials near ferroic phase transitions [J]. Nature Materials, 2014, 13(5): 439–450. DOI: https://doi.org/10.1038/nmat3951.

    Article  Google Scholar 

  43. QIAN Xiao-shi, YE Hui-jian, YANG Tian-nan, et al. Internal biasing in relaxor ferroelectric polymer to enhance the electrocaloric effect [J]. Advanced Functional Materials, 2015, 25(32): 5134–5139. DOI: https://doi.org/10.1002/adfm.201501840.

    Article  Google Scholar 

  44. WU Ping, LOU Xiao-jie, LI Jun-ning, et al. Direct and indirect measurement of electrocaloric effect in lead-free (100-x)Ba(Hf0.2Ti0.8)O3−x((Ba0.7Ca0.3)TiO3 ceramics near multiphase boundary [J]. Journal of Alloys and Compounds, 2017, 725: 275–282. DOI: https://doi.org/10.1016/j.jallcom.2017.07.103.

    Article  Google Scholar 

  45. le GOUPIL F, BAKER A, TONUS F, et al. Direct measurement of electrocaloric effect in lead-free (Na0.5Bi0.5)TiO3 based multilayer ceramic capacitors [J]. Journal of the European Ceramic Society, 2019, 39(11): 3315–3319. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.04.032.

    Article  Google Scholar 

  46. YANG Ming-min, LUO Zheng-dong, MI Zhou, et al. Piezoelectric and pyroelectric effects induced by interface polar symmetry [J]. Nature, 2020, 584(7821): 377–381. DOI: https://doi.org/10.1038/s41586-020-2602-4.

    Article  Google Scholar 

  47. TAGANTSEV A K, PAWLACZYK C, BROOKS K, et al. Built-in electric field assisted nucleation and coercive fields in ferroelectric thin films [J]. Integrated Ferroelectrics, 1994, 4(1): 1–12. DOI: https://doi.org/10.1080/10584589408018654.

    Article  Google Scholar 

  48. LIU Yang, LOU Xiao-jie, BIBES M, et al. Effect of a built-in electric field in asymmetric ferroelectric tunnel junctions [J]. Physical Review B, 2013, 88(2): 024106. DOI: https://doi.org/10.1103/physrevb.88.024106.

    Article  Google Scholar 

  49. KARTHIK J, MANGALAM R, AGAR J, et al. Large built-in electric fields due to flexoelectricity in compositionally graded ferroelectric thin films [J]. Physical Review B, 2013, 87: 024111. DOI: https://doi.org/10.1103/PHYSREVB.87.024111.

    Article  Google Scholar 

  50. AZIGULI H, CHEN Xin, LIU Yang, et al. Enhanced electrocaloric effect in lead-free organic and inorganic relaxor ferroelectric composites near room temperature [J]. Applied Physics Letters, 2018, 112(19): 193902. DOI: https://doi.org/10.1063/1.5028459.

    Article  Google Scholar 

  51. LU S G, ROŽIČ B, ZHANG Q M, et al. Organic and inorganic relaxor ferroelectrics with giant electrocaloric effect [J]. Applied Physics Letters, 2010, 97(16): 162904. DOI: https://doi.org/10.1063/1.3501975.

    Article  Google Scholar 

  52. ZHANG Ling, ZHAO Chun-lin, ZHENG Ting, et al. Large electrocaloric effect in (Bi0.5Na0.5)TiO3-based relaxor ferroelectrics [J]. ACS Applied Materials & Interfaces, 2020, 12(30): 33934–33940. DOI: https://doi.org/10.1021/acsami.0c09343.

    Article  Google Scholar 

  53. SUN Yun-long, ZHANG Le, WANG Hao-yu, et al. Composition-driven inverse-to-conventional transformation of electrocaloric effect and large energy storage density in strontium modified Ba(Zr0.1Ti0.9)O3 thin films [J]. Journal of Materials Chemistry C, 2020, 8(4): 1366–1373. DOI: https://doi.org/10.1039/c9tc06515f.

    Article  Google Scholar 

  54. SHEN Bing-zhong, LI Yong, HAO Xi-hong. Multifunctional all-inorganic flexible capacitor for energy storage and electrocaloric refrigeration over a broad temperature range based on PLZT 9/65/35 thick films [J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34117–34127. DOI: https://doi.org/10.1021/acsami.9b12353.

    Article  Google Scholar 

  55. QIAN Xiao-shi, YE Hui-jian, ZHANG Ying-tang, et al. Giant electrocaloric response over A broad temperature range in modified BaTiO3 ceramics [J]. Advanced Functional Materials, 2014, 24(9): 1300–1305. DOI: https://doi.org/10.1002/adfm.201302386.

    Article  Google Scholar 

  56. ROŽIČ B, KOSEC M, URŠIČ H, et al. Influence of the critical point on the electrocaloric response of relaxor ferroelectrics [J]. Journal of Applied Physics, 2011, 110(6): 064118. DOI: https://doi.org/10.1063/1.3641975.

    Article  Google Scholar 

  57. BAI Yang, ZHENG Guang-ping, DING Kai, et al. The giant electrocaloric effect and high effective cooling power near room temperature for BaTiO3 thick film [J]. Journal of Applied Physics, 2011, 110(9): 094103. DOI: https://doi.org/10.1063/1.3658251.

    Article  Google Scholar 

  58. CHEN Yong, CHEN Ye, DU Yi-ke, et al. Influence of polarization, reorientation, and coupling of dipole on electrocaloric effect in ferroelectrics [J]. International Journal of Applied Ceramic Technology, 2020, 17(3): 1382–1391. DOI: https://doi.org/10.1111/ijac.13411.

    Article  Google Scholar 

  59. LIANG Zhong-shuai, MA Chun-rui, SHEN Lv-kang, et al. Flexible lead-free oxide film capacitors with ultrahigh energy storage performances in extremely wide operating temperature [J]. Nano Energy, 2019, 57: 519–527. DOI: https://doi.org/10.1016/j.nanoen.2018.12.056.

    Article  Google Scholar 

  60. LI Jun-jie, LI Jian-ting, QIN Shi-qiang, et al. Effects of long-and short-range ferroelectric order on the electrocaloric effect in relaxor ferroelectric ceramics [J]. Physical Review Applied, 2019, 11(4): 044032. DOI: https://doi.org/10.1103/physrevapplied.11.044032.

    Article  Google Scholar 

  61. KUMAR A, THAKRE A, JEONG D Y, et al. Prospects and challenges of the electrocaloric phenomenon in ferroelectric ceramics [J]. Journal of Materials Chemistry C, 2019, 7(23): 6836–6859. DOI: https://doi.org/10.1039/c9tc01525f.

    Article  Google Scholar 

  62. SEIDEL J. Ferroelectric nanostructures: Domain walls in motion [J]. Nature Nanotechnology, 2015, 10(2): 109–110. DOI: https://doi.org/10.1038/nnano.2015.3.

    Article  Google Scholar 

  63. LI Feng, CHEN Guo-rui, LIU Xing, et al. Phase-composition and temperature dependence of electrocaloric effect in lead-free Bi0.5Na0.5TiO3 — BaTiO3 — (Sr0.7Bi0.20.1)TiO3 ceramics [J]. Journal of the European Ceramic Society, 2017, 37(15): 4732–4740. DOI: https://doi.org/10.1016/j.jeurceramsoc.2017.06.033.

    Article  Google Scholar 

  64. QIAN Xiao-shi, WU Shan, FURMAN E, et al. Ferroelectric polymers as multifunctional electroactive materials: Recent advances, potential, and challenges [J]. MRS Communications, 2015, 5(2): 115–129. DOI: https://doi.org/10.1557/mrc.2015.20.

    Article  Google Scholar 

  65. LI Xin-yu, QIAN Xiao-shi, LU S G, et al. Tunable temperature dependence of electrocaloric effect in ferroelectric relaxor poly(vinylidene fluoridetrifluoroethylene-chlorofluoroethylene terpolymer [J]. Applied Physics Letters, 2011, 99(5): 052907. DOI: https://doi.org/10.1063/1.3624533.

    Article  Google Scholar 

  66. QIAN Jian-feng, GUO Meng-fan, JIANG Jian-yong, et al. Enhanced electrocaloric strength of P(VDF-TrFE-CFE) induced by edge-on lamellae [J]. Journal of Materials Chemistry C, 2019, 7(11): 3212–3217. DOI: https://doi.org/10.1039/c9tc00239a.

    Article  Google Scholar 

  67. CHEN Xiang-zhong, QIAN Xiao-shi, LI Xin-yu, et al. Enhanced electrocaloric effect in poly(vinylidene fluoride-trifluoroethylene) -based composites [J]. MRS Proceedings, 2013, 1490: 235–240. DOI: https://doi.org/10.1557/opl.2012.1733.

    Article  Google Scholar 

  68. BAO Hui-min, SONG Jiao-fan, ZHANG Juan, et al. Phase transitions and ferroelectric relaxor behavior in P(VDF-TrFE-CFE) terpolymers [J]. Macromolecules, 2007, 40(7): 2371–2379. DOI: https://doi.org/10.1021/ma0628001.

    Article  Google Scholar 

  69. LI Jun-ning, ZHANG Da-wei, QIN Shi-qiang, et al. Large room-temperature electrocaloric effect in lead-free BaHf TiO3 ceramics under low electric field [J]. Acta Materialia, 2016, 115: 58–67. DOI: https://doi.org/10.1016/j.actamat.2016.05.044.

    Article  Google Scholar 

  70. LI Fei, ZHANG Shu-jun, YANG Tian-nan, et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals [J]. Nature Communications, 2016, 7: 13807. DOI: https://doi.org/10.1038/ncomms13807.

    Article  Google Scholar 

  71. HOU Ying, YANG Lu, QIAN Xiao-shi, et al. Enhanced electrocaloric effect in composition gradient bilayer thick films [J]. Applied Physics Letters, 2016, 108(13): 133501. DOI: https://doi.org/10.1063/1.4944409.

    Article  Google Scholar 

  72. PENG Si-min, YANG Xiao, YANG Yang, et al. Direct detection of local electric polarization in the interfacial region in ferroelectric polymer nanocomposites [J]. Advanced Materials, 2019, 31(21): 1807722. DOI: https://doi.org/10.1002/adma.201807722.

    Article  Google Scholar 

  73. XIE Yun-chuan, JIANG Wan-rong, FU Tao, et al. Achieving high energy density and low loss in PVDF/BST nanodielectrics with enhanced structural homogeneity [J]. ACS Applied Materials & Interfaces, 2018, 10(34): 29038–29047. DOI: https://doi.org/10.1021/acsami.8b10354.

    Article  Google Scholar 

  74. QIAN Jian-feng, JIANG Jian-yong, SHEN Yang. Enhanced electrocaloric strength in P(VDF-TrFE-CFE) by decreasing the crystalline size [J]. Journal of Materiomics, 2019, 5(3): 357–362. DOI: https://doi.org/10.1016/j.jmat.2019.04.001.

    Article  Google Scholar 

  75. LV Zhi-bin, WEI Jie, YANG Tian-tian, et al. Manipulation of Curie temperature and ferroelectric polarization for large electrocaloric strength in BaTiO3-based ceramics [J]. Ceramics International, 2020, 46(10): 14978–14984. DOI: https://doi.org/10.1016/j.ceramint.2020.03.027.

    Article  Google Scholar 

  76. YANG Chang-hong, HAN Ya-jie, FENG Chao, et al. Toward multifunctional electronics: Flexible NBT-based film with a large electrocaloric effect and high energy storage property [J]. ACS Applied Materials & Interfaces, 2020, 12(5): 6082–6089. DOI: https://doi.org/10.1021/acsami.9b21105.

    Article  Google Scholar 

  77. LI Jing-lei, SHEN Zhong-hui, CHEN Xiang-hua, et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications [J]. Nature Materials, 2020, 19(9): 999–1005. DOI: https://doi.org/10.1038/s41563-020-0704-x.

    Article  Google Scholar 

  78. YANG Yang, JI Yuan-chao, FANG Min-xia, et al. Morphotropic relaxor boundary in a relaxor system showing enhancement of electrostrain and dielectric permittivity [J]. Physical Review Letters, 2019, 123(13): 137601. DOI: https://doi.org/10.1103/PhysRevLett.123.137601.

    Article  Google Scholar 

  79. ZHANG Yu-lei, LI Wei-li, WANG Zhen-yu, et al. Perovskite Sr1−x(Na0.5Bi0.5)xTi0.99Mn0.01O3 thin films with defect dipoles for high energy-storage and electrocaloric performance [J]. ACS Applied Materials & Interfaces, 2019, 11(41): 37947–37954. DOI: https://doi.org/10.1021/acsami.9b14815.

    Article  Google Scholar 

  80. DEFAY E, FAYE R, DESPESSE G, et al. Enhanced electrocaloric efficiency via energy recovery [J]. Nature Communications, 2018, 9: 1827. DOI: https://doi.org/10.1038/s41467-018-04027-9.

    Article  Google Scholar 

  81. APREA C, GRECO A, MAIORINO A. A numerical analysis of an active magnetic regenerative cascade system [J]. International Journal of Energy Research, 2011, 35(3): 177–188. DOI: https://doi.org/10.1002/er.1682.

    Article  Google Scholar 

  82. GU Hai-ming, QIAN Xiao-shi, YE Hui-jian, et al. An electrocaloric refrigerator without external regenerator [J]. Applied Physics Letters, 2014, 105(16): 162905. DOI: https://doi.org/10.1063/1.4898812.

    Article  Google Scholar 

  83. TORELLÓ A, LHERITIER P, USUI T, et al. Giant temperature span in electrocaloric regenerator [J]. Science, 2020, 370(6512): 125–129. DOI: https://doi.org/10.1126/science.abb8045.

    Article  Google Scholar 

  84. CROSSLEY S, MCGINNIGLE J R, KAR-NARAYAN S, et al. Finite-element optimisation of electrocaloric multilayer capacitors [J]. Applied Physics Letters, 2014, 104(8): 082909. DOI: https://doi.org/10.1063/1.4866256.

    Article  Google Scholar 

  85. LIU Yang, DKHIL B, DEFAY E. Spatially resolved imaging of electrocaloric effect and the resultant heat flux in multilayer capacitors [J]. ACS Energy Letters, 2016, 1(3): 521–528. DOI: https://doi.org/10.1021/acsenergylett.6b00232.

    Article  Google Scholar 

  86. WANG Yun-da, ZHANG Zi-yang, USUI T, et al. A high-performance solid-state electrocaloric cooling system [J]. Science, 2020, 370(6512): 129–133. DOI: https://doi.org/10.1126/science.aba2648.

    Article  Google Scholar 

  87. HU Hai-long, ZHANG Fan, LIM S, et al. Surface functionalisation of carbon nanofiber and Barium titanate by polydopamine to enhance the energy storage density of their nanocomposites [J]. Composites Part B: Engineering, 2019, 178: 107459. DOI: https://doi.org/10.1016/j.compositesb.2019.107459.

    Article  Google Scholar 

  88. SHAH D, MAITI P, GUNN E, et al. Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology [J]. Advanced Materials, 2004, 16(14): 1173–1177. DOI: https://doi.org/10.1002/adma.200306355.

    Article  Google Scholar 

  89. DEFAY E, CROSSLEY S, KAR-NARAYAN S, et al. The electrocaloric efficiency of ceramic and polymer films [J]. Advanced Materials, 2013, 25(24): 3337–3342. DOI: https://doi.org/10.1002/adma.201300606.

    Article  Google Scholar 

  90. GU Hai-ming, CRAVEN B, QIAN Xiao-shi, et al. Simulation of chip-size electrocaloric refrigerator with high cooling-power density [J]. Applied Physics Letters, 2013, 102(11): 112901. DOI: https://doi.org/10.1063/1.4796184.

    Article  Google Scholar 

  91. LIU Yang, ZHANG Guang-zu, HAIBIBU A, et al. High cyclic stability of electrocaloric effect in relaxor poly (vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymers in the absence of ferroelectric phase transition [J]. Journal of Applied Physics, 2019, 126(23): 234102. DOI: https://doi.org/10.1063/1.5127310.

    Article  Google Scholar 

  92. ABDULLAHI H Y, HU Hai-long. Current status of polymer nanocomposite dielectrics for high-temperature applications [J]. Composites Part A: Applied Science and Manufacturing, 2020, 138: 106064. DOI: https://doi.org/10.1016/j.compositesa.2020.106064.

    Article  Google Scholar 

  93. MA Yang-bin, XU Bai-xiang, ALBE K, et al. Tailoring the electrocaloric effect by internal bias fields and field protocols [J]. Physical Review Applied, 2018, 10(2): 024048. DOI: https://doi.org/10.1103/physrevapplied.10.024048.

    Article  Google Scholar 

  94. SHEN Zhong-hui, WANG Jian-jun, JIANG Jian-yong, et al. Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics [J]. Nature Communications, 2019, 10: 1843. DOI: https://doi.org/10.1038/s41467-019-09874-8.

    Article  Google Scholar 

  95. LI Fei, ZHANG Shu-jun, DAMJANOVIC D, et al. Local structural heterogeneity and electromechanical responses of ferroelectrics: Learning from relaxor ferroelectrics [J]. Advanced Functional Materials, 2018, 28(37): 1801504. DOI: https://doi.org/10.1002/adfm.201801504.

    Article  Google Scholar 

  96. LIU Yang, ZHANG Bing, XU Wen-han, et al. Chirality-induced relaxor properties in ferroelectric polymers [J]. Nature Materials, 2020, 19(11): 1169–1174. DOI: https://doi.org/10.1038/s41563-020-0724-6.

    Article  Google Scholar 

  97. LIU Y, YANG T, ZHANG B, et al. Structural insight in the interfacial effect in ferroelectric polymer nanocomposites [J]. Advanced Materials, 2020, 32(49): e2005431. DOI: https://doi.org/10.1002/adma.202005431.

    Article  Google Scholar 

  98. WANG Jian-jun, FORTINO D, WANG Bo, et al. Extraordinarily large electrocaloric strength of metal-free perovskites [J]. Advanced Materials, 2020, 32(7): 1906224. DOI: https://doi.org/10.1002/adma.201906224.

    Article  Google Scholar 

  99. ZHANG Yi-zhou, WANG Yang, CHENG Tao, et al. Printed supercapacitors: Materials, printing and applications [J]. Chemical Society Reviews, 2019, 48(12): 3229–3264. DOI: https://doi.org/10.1039/c7cs00819h.

    Article  Google Scholar 

  100. ZHOU Lu, YU Meng-jie, CHEN Xiao-lian, et al. Screen-printed poly(3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) grids as ITO-free anodes for flexible organic light-emitting diodes [J]. Advanced Functional Materials, 2018, 28(11): 1705955. DOI: https://doi.org/10.1002/adfm.201705955.

    Article  Google Scholar 

  101. LI Dong-dong, LAI Wen-yong, ZHANG Yi-zhou, et al. Printable transparent conductive films for flexible electronics [J]. Advanced Materials, 2018, 30(10): 1704738. DOI: https://doi.org/10.1002/adma.201704738.

    Article  Google Scholar 

  102. ZHANG Yi-zhou, WANG Yang, CHENG Tao, et al. Flexible supercapacitors based on paper substrates: A new paradigm for low-cost energy storage [J]. Chemical Society Reviews, 2015, 44(15): 5181–5199. DOI: https://doi.org/10.1039/c5cs00174a.

    Article  Google Scholar 

  103. CHENG Tao, ZHANG Yi-zhou, WANG Shi, et al. Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors [J]. Advanced Functional Materials, 2021, 31(24): 2101303. DOI: https://doi.org/10.1002/adfm.202101303.

    Article  Google Scholar 

  104. CHENG Tao, ZHANG Yi-zhou, LAI Wen-yong, et al. Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability [J]. Advanced Materials, 2015, 27(22): 3349–3376. DOI: https://doi.org/10.1002/adma.201405864.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-long Hu  (胡海龙).

Additional information

Conflict of interest

HU Hai-long declares that he has no known competing financial interests or personal relationships to influence the work reported in this paper.

Foundation item: Project(202045007) supported by the Start-up Funds for Outstanding Talents in Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Hl. Polymer nanocomposite dielectrics with high electrocaloric effect for flexible solid-state cooling devices. J. Cent. South Univ. 29, 2857–2872 (2022). https://doi.org/10.1007/s11771-022-5151-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5151-1

Key words

关键词

Navigation