Skip to main content
Log in

Consolidation behavior of the expansive clay treated with cement and zeolite

添加水泥和沸石的膨胀黏土固结行为

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The expansive clays are extremely sensitive to the slight moisture alteration, exhibiting sequentially volume change. Uneven settlement of the buildings and infrastructures underlying expansive soil is a critical challenge that geotechnical engineers have to deal with. Therefore, the objective of this study is to assess the alteration in the compressibility behavior of expansive clay respecting partial replacement of cement by zeolite in cemented samples. For this purpose, 7 and 28 d cured samples treated with 6%, 8%, 10%, and 12% cement addition and 0, 10%, 30%, 50%, 70%, and 90% cement replacement by zeolite were investigated through Atterberg limit and a series of one-dimensional consolidation tests to evaluate the consistency limits and compressibility alteration. The liquid limits of the soil samples indicated a decremental trend as the cement content rose. Afterward, the increase of zeolite replacement up to 30% in each specific cement content diminished liquid limit to its lowest value. Further increment of zeolite replacement increased the liquid limit of the soil-binder mixtures. The lowest plasticity index was also achieved at the 30% zeolite replacement percentage; hence, the lowest swelling potential would be resulted, concerning an indirect classification. The results of the consolidation experimentations disclosed that zeolite replacement had adverse influence on consolidation parameters of cemented samples such as compression index, swell index, coefficient of compressibility, coefficient of volume compressibility, and coefficient of consolidation after 7 d of curing whereas after 28 d of curing, the 30% zeolite-replaced samples represented the best consolidation parameters. Eventually, it can be stated that the addition of cement alongside the partial substitution of cement by zeolite can be a beneficial strategy for the geo-environmental targets of this study.

摘要

膨胀黏土对水分的轻微变化极为敏感,表现出连续的体积变化。膨胀土导致的建筑物和基础设 施的不均匀沉降是岩土工程师必须应对的一个重要挑战。因此,本研究的目的是评估在膨胀黏土样品 中,由沸石部分取代水泥的膨胀黏土的固结行为变化。膨胀黏土中水泥添加量分别为6%,8%,10%, 12%以及再用10%,30%, 50%,70%和90%沸石分别代替水泥,以7 和28 d 的固化样品为研究对象, 通过阿特伯格极限和系列一维固结测试评估黏土的稠度极限和固结行为。随着水泥含量的上升,黏土 样品的液限呈下降趋势。当沸石替代水泥的量增加到30%时,液限降低到最低。沸石替代水泥进一步 增加了黏土的液限。在30%的沸石替换下,塑性指数也最低,涉及到间接分类。固结实验结果表明, 沸石替代对黏土样品的压缩指数、膨胀指数、压缩系数、体积压缩系数、固结系数有不利影响,而固 化28 d 后,30%替代的黏土固结参数最好。研究结果表明,添加水泥并同时用沸石部分替代水泥是有 益的。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PHANIKUMAR B R, SHARMA R S. Volume change behavior of fly ash-stabilized clays [J]. Journal of Materials in Civil Engineering, 2007, 19(1): 67–74. DOI: https://doi.org/10.1061/(asce)0899-1561(2007)19:1(67).

    Article  Google Scholar 

  2. MUTHUKKUMARAN K, SELVAN S S. Stabilization of montmorillonite-rich bentonite clay using neem leaves ash [J]. International Journal of Geosynthetics and Ground Engineering, 2020, 6(2): 1–7. DOI: https://doi.org/10.1007/s40891-020-0194-6.

    Article  Google Scholar 

  3. KUMAR K, SOLANKI A J. Evaluation of RBI grade 81 for stabilization of expansive soil as sub-grade material [J]. Materials Today: Proceedings, 2017, 4(9): 9737–9741. DOI: https://doi.org/10.1016/j.matpr.2017.06.258.

    Google Scholar 

  4. AL-RAWAS A, GOOSEN M F A. Expansive soils: Recent advances in characterization and treatment[M]. Taylor & Francis, 2006.

  5. WANG Dong-xing, KORKIALA-TANTTU L. 1-D compressibility behaviour of cement-lime stabilized soft clays [J]. European Journal of Environmental and Civil Engineering, 2020, 24(7): 1013–1031. DOI: https://doi.org/10.1080/19648189.2018.1440633.

    Article  Google Scholar 

  6. CONSOLI N C, CARRETTA M S, LEON H B, et al. Behaviour of cement-stabilised silty sands subjected to harsh environmental conditions [J]. Proceedings of the Institution of Civil Engineers–Geotechnical Engineering, 2020, 173(1): 40–48. DOI: https://doi.org/10.1680/jgeen.18.00243.

    Article  Google Scholar 

  7. PRUSINSKI J R, BHATTACHARJA S. Effectiveness of Portland cement and lime in stabilizing clay soils [J]. Transportation Research Record: Journal of the Transportation Research Board, 1999, 1652(1): 215–227. DOI: https://doi.org/10.3141/1652-28.

    Article  Google Scholar 

  8. YADAV J S, HUSSAIN S, GARG A, et al. Geotechnical properties of rubber reinforced cemented clayey soil [J]. Transportation Infrastructure Geotechnology, 2019, 6(4): 337–354. DOI: https://doi.org/10.1007/s40515-019-00088-5.

    Article  Google Scholar 

  9. DJELLOUL R, MRABENT S A B, HACHICHI A, et al. Effect of cement on the drying–wetting paths and on some engineering properties of a compacted natural clay from Oran, Algeria [J]. Geotechnical and Geological Engineering, 2018, 36(2): 995–1010. DOI: https://doi.org/10.1007/s10706-017-0370-1.

    Google Scholar 

  10. ZIDAN A F. Strength and consolidation characteristics for cement stabilized cohesive soil considering consistency index [J]. Geotechnical and Geological Engineering, 2020, 38(5): 5341–5353. DOI: https://doi.org/10.1007/s10706-020-01367-6.

    Article  Google Scholar 

  11. PAUL A, HUSSAIN M. An experiential investigation on the compressibility behavior of cement-treated Indian peat [J]. Bulletin of Engineering Geology and the Environment, 2020, 79(3): 1471–1485. DOI: https://doi.org/10.1007/s10064-019-01623-x.

    Article  Google Scholar 

  12. POONI J, GIUSTOZZI F, ROBERT D, et al. Durability of enzyme stabilized expansive soil in road pavements subjected to moisture degradation [J]. Transportation Geotechnics, 2019, 21: 100255. DOI: https://doi.org/10.1016/j.trgeo.2019.100255.

    Article  Google Scholar 

  13. APRIANTI E, SHAFIGUREH P, BAHRI S, et al. Supplementary cementitious materials origin from agricultural wastes–A review [J]. Construction and Building Materials, 2015, 74: 176–187. DOI: https://doi.org/10.1016/j.conbuildmat.2014.10.010.

    Article  Google Scholar 

  14. MOLAABASI H, NADERI SEMSANI S, SABERIAN M, et al. Evaluation of the long-term performance of stabilized sandy soil using binary mixtures: A micro- and macro-level approach [J]. Journal of Cleaner Production, 2020, 267: 122209. DOI: https://doi.org/10.1016/j.jclepro.2020.122209.

    Article  Google Scholar 

  15. TEMIMI M, RAHAL M A, YAHIAOUI M, et al. Recycling of fly ash in the consolidation of clay soils [J]. Resources, Conservation and Recycling, 1998, 24(1): 1–6. DOI: https://doi.org/10.1016/S0921-3449(98)00023-8.

    Article  Google Scholar 

  16. YUNUS N Z M. Performance of lime-treated marine clay on strength and compressibility chracteristics [J]. International Journal of Geomate, 2015, 8(16): 1232–1238. DOI: https://doi.org/10.21660/2015.16.4132.

    Google Scholar 

  17. YUNUS N Z M, WANATOWSKI D, HASSAN N A, et al. Shear strength and compressibility behaviour of lime-treated organic clay [J]. KSCE Journal of Civil Engineering, 2016, 20(5): 1721–1727. DOI: https://doi.org/10.1007/s12205-015-0438-5.

    Article  Google Scholar 

  18. DEVELIOGLU I, PULAT H F. Compressibility behaviour of natural and stabilized dredged soils in different organic matter contents [J]. Construction and Building Materials, 2019, 228: 116787. DOI: https://doi.org/10.1016/j.conbuildmat.2019.116787.

    Article  Google Scholar 

  19. ATAHU M K, SAATHOFF F, GEBISSA A. Strength and compressibility behaviors of expansive soil treated with coffee husk ash [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(2): 337–348. DOI: https://doi.org/10.1016/j.jrmge.2018.11.004.

    Article  Google Scholar 

  20. MOGHAL A A B, VYDEHI V, MOGHAL M B, et al. Effect of calcium-based derivatives on consolidation, strength, and lime-leachability behavior of expansive soil [J]. Journal of Materials in Civil Engineering, 2020, 32(4): 04020048. DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0003088.

    Article  Google Scholar 

  21. LI Chuan-xun, WANG Chang-jian, LU Meng-meng, et al. One-dimensional large-strain consolidation of soft clay with non-Darcian flow and nonlinear compression and permeability of soil [J]. Journal of Central South University, 2017, 24(4): 967–976. DOI: https://doi.org/10.1007/s11771-017-3499-4.

    Article  Google Scholar 

  22. IBRAHIM H H, MAWLOOD Y I, ALSHKANE Y M. Using waste glass powder for stabilizing high-plasticity clay in Erbil City-Iraq [J]. International Journal of Geotechnical Engineering, 2021, 15(4): 496–503. DOI: https://doi.org/10.1080/19386362.2019.1647644.

    Article  Google Scholar 

  23. HE Xing-xing, CHEN Yi-jun, LI Yuan, et al. Consolidation behavior and microstructure properties of cement-treated dredged soil during the stress curing [J]. Marine Georesources & Geotechnology, 2022, 40(4): 500–510. DOI: https://doi.org/10.1080/1064119x.2021.1914249.

    Article  Google Scholar 

  24. LATIFI N, VAHEDIFARD F, GHAZANFARI E, et al. Sustainable usage of calcium carbide residue for stabilization of clays [J]. Journal of Materials in Civil Engineering, 2018, 30(6): 04018099. DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0002313.

    Article  Google Scholar 

  25. HOSSAIN M A. Improvement of strength and consolidation properties of clayey soil using ceramic dust [J]. American Journal of Civil Engineering, 2019, 7(2): 41–46. DOI: https://doi.org/10.11648/j.ajce.20190702.11.

    Article  MathSciNet  Google Scholar 

  26. AFRASIABIAN A, SALIMI M, MOVAHEDRAD M, et al. Assessing the impact of GBFS on mechanical behaviour and microstructure of soft clay [J]. International Journal of Geotechnical Engineering, 2021, 15(3): 327–337. DOI: https://doi.org/10.1080/19386362.2019.1565393.

    Article  Google Scholar 

  27. RAJABI A M, ARDAKANI S B. Effects of natural-zeolite additive on mechanical and physicochemical properties of clayey soils [J]. Journal of Materials in Civil Engineering, 2020, 32(10): 7(2): 41–46. DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0003336.

    Article  Google Scholar 

  28. KORDNAEIJ A, MOAYED R Z, SOLEIMANI M. Shear wave velocity of zeolite-cement grouted sands [J]. Soil Dynamics and Earthquake Engineering, 2019, 122: 196–210. DOI: https://doi.org/10.1016/j.soildyn.2019.03.026.

    Article  Google Scholar 

  29. KORDNAEIJ A, MOAYED R Z, SOLEIMANI M. Small strain shear modulus equations for zeolite–cement grouted sands [J]. Geotechnical and Geological Engineering, 2019, 37(6): 5097–5111. DOI: https://doi.org/10.1007/s10706-019-00964-4.

    Article  Google Scholar 

  30. MOLA-ABASI H, SHOOSHPASHA I. Influence of zeolite and cement additions on mechanical behavior of sandy soil [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(5): 746–752. DOI: https://doi.org/10.1016/j.jrmge.2016.01.008

    Article  Google Scholar 

  31. MOLA-ABASI H, KORDTABAR B, KORDNAEIJ A. Effect of natural zeolite and cement additive on the strength of sand [J]. Geotechnical and Geological Engineering, 2016, 34(5): 1539–1551. DOI: https://doi.org/10.1007/s10706-016-0060-4.

    Article  Google Scholar 

  32. MOLA-ABASI H, KHAJEH A, NADERI SEMSANI S. Effect of the ratio between porosity and SiO2 and Al2O3 on tensile strength of zeolite-cemented sands [J]. Journal of Materials in Civil Engineering, 2018, 30(4): 04018028. DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0002197.

    Article  Google Scholar 

  33. KORDNAEIJ A, MOAYED R Z, SOLEIMANI M. Unconfined compressive strength of loose sandy soils grouted with zeolite and cement [J]. Soils and Foundations, 2019, 59(4): 905–919. DOI: https://doi.org/10.1016/j.sandf.2019.03.012.

    Article  Google Scholar 

  34. TURKOZ M, VURAL P. The effects of cement and natural zeolite additives on problematic clay soils [J]. SECM, 2013, 20(4): 395–405. DOI: https://doi.org/10.1515/secm-2012-0104.

    Article  Google Scholar 

  35. MARIRI M, ZIAIE MOAYED R, KORDNAEIJ A. Stress–strain behavior of loess soil stabilized with cement, zeolite, and recycled polyester fiber [J]. Journal of Materials in Civil Engineering, 2019, 31(12): 04019291. DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0002952.

    Article  Google Scholar 

  36. AHMADI C H, HAMID L S, MOLAABASI H, et al. The effect of zeolite and cement stabilization on the mechanical behavior of expansive soils [J]. Construction and Building Materials, 2021, 272: 121630. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121630.

    Article  Google Scholar 

  37. AKBARI H R, SHARAFI H, GOODARZI A R. Effect of polypropylene fiber inclusion in Kaolin clay stabilized with lime and nano-zeolite considering temperatures of 20 and 40°C [J]. Bulletin of Engineering Geology and the Environment, 2021, 80(2): 1841–1855. DOI: https://doi.org/10.1007/s10064-020-02028-x.

    Article  Google Scholar 

  38. ASTM D854. Standard test methods for specific gravity of soil solids by water pycnometer[S]. 2000. DOI: https://doi.org/10.1520/D0854-10.2.

  39. ASTM D2216. Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass [S]. 2010. DOI: https://doi.org/10.1520/D2216-10.N.

  40. ASTM D698-12. Standard test methods for laboratory compaction characteristics of soil using standard effort (12, 400 ft-lbf/ft3 (600 kN·m/m3)) [S]. 2012. DOI: https://doi.org/10.1520/D0698-12E01.1.

  41. ASTM D4318-10. Standard test methods for liquid limit, plastic limit, and plasticity index of soils [S]. 2005. DOI: https://doi.org/10.1520/D4318-10.

  42. ASTM D2166. Standard test method for unconfined compressive strength of cohesive soil [S]. 2013. DOI: https://doi.org/10.1520/D2166.

  43. ASTM D3080/D3080M-11. Standard test method for direct shear test of soils under consolidated drained conditions [S]. 2011. DOI: https://doi.org/10.1520/D3080.

  44. ASTM D2435. Standard test methods for one-dimensional consolidation properties of soils using incremental loading [S]. 2011. DOI: D2435/D2435M-11.

  45. BS EN197-1. Cement part 1: Composition, specifications and conformity criteria for common cements [S]. 2011. DOI: 10.3403/30205527U.

  46. ASTM D2487. Standard practice for classification of soils for engineering purposes (unified soil classification system) [S]. 2011.

  47. ASTM C618-12a. Standard specification for coal fly ash and raw or calcined natural pozzolan for use as a mineral admixture in portland cement concrete [S]. 2012. DOI: https://doi.org/10.1520/C0618.

  48. DAS B M, SOBHAN K. Principles of geotechnical engineering [M]. Cengage Learning InC, 2013.

  49. SNETHEN D. An evaluation of expedient methodology for identification of potentially expansive soil [R]. Offices of Research & Development, Department of Transportation, Federal Highway Administration, 1977.

  50. NALBANTOGLU Z, TUNCER E R. Compressibility and hydraulic conductivity of a chemically treated expansive clay [J]. Canadian Geotechnical Journal, 2001, 38(1): 154–160. DOI: https://doi.org/10.1139/t00-076.

    Google Scholar 

  51. PHANIKUMAR B R, SREEDHARAN R, ANIRUDDH C. Swell-compressibility characteristics of lime-blended and cement-blended expansive clays–A comparative study [J]. Geomechanics and Geoengineering, 2015, 10(2): 153–162. DOI: https://doi.org/10.1080/17486025.2014.902120.

    Article  Google Scholar 

  52. MOHANTY S K, PRADHAN P K, MOHANTY C R. Consolidation and drainage characteristics of expansive soil stabilized with fly ash and dolochar [J]. Geotechnical and Geological Engineering, 2016, 34(5): 1435–1451. DOI: https://doi.org/10.1007/s10706-016-0053-3.

    Article  Google Scholar 

  53. SIVAPULLAIAH P V, PRASHANTH J P, SRIDHARAN A. Effect of fly ash on the index properties of black cotton soil [J]. Soils and Foundations, 1996, 36(1): 97–103. DOI: https://doi.org/10.3208/sandf.36.97.

    Article  Google Scholar 

  54. SPAGNOLI G, SHIMOBE S. Statistical analysis of some correlations between compression index and Atterberg limits [J]. Environmental Earth Sciences, 2020, 79(24): 1–15. DOI: https://doi.org/10.1007/s12665-020-09272-0.

    Article  Google Scholar 

  55. CARRIER W D. Consolidation parameters derived from index tests [J]. Géotechnique, 1985, 35(2): 211–213. DOI: https://doi.org/10.1680/geot.1985.35.2.211.

    Article  MathSciNet  Google Scholar 

  56. DONG Yi, LU Ning, FOX P J. Drying-induced consolidation in soil [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(9): 04020092. DOI: https://doi.org/10.1061/(asce)gt.1943-5606.0002327.

    Article  Google Scholar 

  57. ASURI S, KESHAVAMURTHY P. Expansive soil characterisation: An appraisal [J]. INAE Letters, 2016, 1(1): 29–33. DOI: https://doi.org/10.1007/s41403-016-0001-9.

    Article  Google Scholar 

  58. KHALID U, YE Guan-lin, YADAV S K, et al. Consolidation pressure consequences on the soil structure of artificial structured marine clay: Macro and micro evaluation [J]. Geotechnical and Geological Engineering, 2021, 39(1): 247–263. DOI: https://doi.org/10.1007/s10706-020-01489-x.

    Article  Google Scholar 

  59. KAUR I, JHA J N. Effects of rice husk ash-cement mixtures on stabilization of clayey soils[J]. International Journal of Computer Appliciation, 2016, 975: 30–33.

    Google Scholar 

  60. TURKOZ M, VURAL P. The effects of cement and natural zeolite additives on problematic clay soils [J]. Science and Engineering of Composite Materials, 2013, 20(4): 395–405. DOI: https://doi.org/10.1515/secm-2012-0104.

    Article  Google Scholar 

  61. LI Geng-ying. Properties of high-volume fly ash concrete incorporating nano-SiO2 [J]. Cement and Concrete Research, 2004, 34(6): 1043–1049. DOI: https://doi.org/10.1016/j.cemconres.2003.11.013.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Hamed AHMADI CHENARBONI conceptualized the research subject, experimentally investigated, analyzed the experimental results, wrote the first draft of the manuscript, and cooperated in preparing the final version context. Seyed Hamid LAJEVARDI was the project administrator, supervised the experimental efforts, and validated the tests’ results. Hossein MOLAABASI reviewed, edited, and wrote the final manuscript, validated the experimental data, visualized and prepared the 3D figures, and Ehsanollah ZEIGHAMI co-supervised the research processes and helped to reply to reviewers’ comments.

Corresponding author

Correspondence to Hossein Molaabasi.

Additional information

Conflict of interest

Hamed AHMADI CHENARBONI, Seyed Hamid LAJEVARDI, Hossein MOLAABASI, and Ehsanollah ZEIGHAMI declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi Chenarboni, H., Lajevardi, S.H., Molaabasi, H. et al. Consolidation behavior of the expansive clay treated with cement and zeolite. J. Cent. South Univ. 29, 3140–3157 (2022). https://doi.org/10.1007/s11771-022-5147-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5147-x

Key words

关键词

Navigation