Skip to main content
Log in

First-principles computational studies on Na+ diffusion in Li-doped P3-type NaMnO2 as cathode material for Na-ion batteries

锂离子掺杂P3型NaMnO2钠离子电池正极材料中Na+扩散的第一性原理计算研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Na-ion diffusion kinetics is a key factor that decided the charge/discharge rate of the electrode materials in Na-ion batteries. In this work, two extreme concentrations of NaMnO2 and Na2/3Li1/6Mn5/6O2 are considered, namely, the vacancy migration of Na ions in the fully intercalated and the migration of Na ions in the fully de-intercalated. The Na-vacancy and Na+ distribution in NaMnO2 migrated along oxygen dumbbell hop (ODH) and tetrahedral site hop (TSH), and the migration energy barriers were 0.374 and 0.296 eV, respectively. In NaLi1/6Mn5/6O2, the inhomogeneity of Li doping leads to the narrowing of the interlayer spacing by 0.9% and the increase of the energy barrier by 53.8%. On the other hand, due to the alleviation of Jahn-Teller effect of neighboring Mn, the bonding strength of Mn-O was enhanced, so that the energy barrier of path 2–3 in Mn-L1 and Mn-L2 was the lowest, which was 0.234 and 0.424 eV, respectively. In Na1/6Li1/6Mn5/6O2, the migration energy barriers of Na-L2 and Na-L3 are 1.233 and 0.779 eV, respectively, because Li+ migrates from the transition (TM) layer to the alkali metal (AM) layer with Na+ migration, which requires additional energy.

摘要

钠离子扩散动力学是决定钠离子电池电极材料充放电速率的关键因素。本文考虑了NaMnO2 和Na2/3Li1/6Mn5/6O2 的两种极端浓度,即完全嵌入的Na+空位迁移和完全脱嵌的Na+迁移。NaMnO2 中的空位和钠离子分布沿着氧哑铃位迁移和四面体位迁移,迁移能垒分别为0.374 和0.296 eV。在NaLi1/6Mn5/6O2中,一方面由于Li 掺杂的不均匀性导致被掺杂层的层间距变窄0.9%,能垒增加53.8%;另一方面由于缓解邻近Mn 的Jahn-Teller 效应强化了Mn-O 成键强度,使得Mn-L1 和Mn-L2 中path2-3 能垒最低,分别为0.234 和0.424 eV。在Na1/6Li1/6Mn5/6O2中,Na-L2 和Na-L3 迁移能垒分别为1.233 和0.779 eV,这是因为随着Na+迁移,Li+会从过渡金属层向碱金属层迁移,从而需要额外的能量。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DRESSELHAUS M S, THOMAS I L. Alternative energy technologies [J]. Nature, 2001, 414(6861): 332–337. DOI: https://doi.org/10.1038/35104599.

    Article  Google Scholar 

  2. CROY J R, GALLAGHER K G, BALASUBRAMANIAN M, et al. Quantifying hysteresis and voltage fade in xLi2MnO3 · (1 − x)LiMn0.5Ni0.5O2 electrodes as a function of Li2MnO3 content [J]. Journal of the Electrochemical Society A, 2013, 161(3): 318–325. DOI: https://doi.org/10.1149/2.049403jes.

    Article  Google Scholar 

  3. DU Ke, ZHU Jin-you, HU Guo-rong, et al. Exploring reversible oxidation of oxygen in a manganese oxide [J]. Energy & Environmental Science, 2016, 9(8): 2575–2577. DOI: https://doi.org/10.1039/c6ee01367h.

    Article  Google Scholar 

  4. SEO D H, LEE J, URBAN A, et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials [J]. Nature Chemistry, 2016, 8(7): 692–697. DOI: https://doi.org/10.1038/nchem.2524.

    Article  Google Scholar 

  5. MA Chu-ze, ALVARADO J, XU Jing, et al. Exploring oxygen activity in the high energy P2-type Na0.78Ni0.23Mn0.69O2 cathode material for Na-ion batteries [J]. Journal of the American Chemical Society, 2017, 139(13): 4835–4845. DOI: https://doi.org/10.1021/jacs.7b00164.

    Article  Google Scholar 

  6. QI Yu-ruo, TONG Zi-zheng, ZHAO Jun-mei, et al. Scalable room-temperature synthesis of multi-shelled Na3(VOPO4)2F microsphere cathodes [J]. Joule, 2018, 2(11): 2348–2363. DOI: https://doi.org/10.1016/j.joule.2018.07.027.

    Article  Google Scholar 

  7. RONG Xiao-hui, LIU Jue, HU En-yuan, et al. Structure-induced reversible anionic redox activity in Na layered oxide cathode [J]. Joule, 2018, 2(1): 125–140. DOI: https://doi.org/10.1016/j.joule.2017.10.008.

    Article  Google Scholar 

  8. LUO Kun, ROBERTS M R, HAO Rong, et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen [J]. Nature Chemistry, 2016, 8(7): 684–691. DOI: https://doi.org/10.1038/nchem.2471.

    Article  Google Scholar 

  9. van der VEN A, CEDER G. Lithium diffusion in layered LixCoO2 [J]. Electrochemical and Solid-State Letters, 1999, 3(7): 301. DOI: https://doi.org/10.1149/1.1391130.

    Article  Google Scholar 

  10. KONG Fan-tai, LONGO R C, PARK M S, et al. Ab initio study of doping effects on LiMnO2 and Li2MnO3 cathode materials for Li-ion batteries [J]. Journal of Materials Chemistry A, 2015, 3(16): 8489–8500. DOI: https://doi.org/10.1039/c5ta01445j.

    Article  Google Scholar 

  11. ZHENG Lu-min, WANG Zhi-qiang, WU Mu-sheng, et al. Jahn–Teller type small polaron assisted Na diffusion in NaMnO2 as a cathode material for Na-ion batteries [J]. Journal of Materials Chemistry A, 2019, 7(11): 6053–6061. DOI: https://doi.org/10.1039/c8ta11955d.

    Article  Google Scholar 

  12. SHU G J, CHOU F C. Sodium-ion diffusion and ordering in single-crystal P2-NaxCoO2 [J]. Physical Review B, 2008, 78(5): 052101. DOI: https://doi.org/10.1103/physrevb.78.052101.

    Article  Google Scholar 

  13. BAGGETTO L, GANESH P, SUN Che-nan, et al. Intrinsic thermodynamic and kinetic properties of Sb electrodes for Li-ion and Na-ion batteries: Experiment and theory [J]. Journal of Materials Chemistry A, 2013, 1(27): 7985. DOI: https://doi.org/10.1039/c3ta11568b.

    Article  Google Scholar 

  14. XU Yun-hua, ZHU Yu-jie, LIU Yi-hang, et al. Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries [J]. Advanced Energy Materials, 2013, 3(1): 128–133. DOI: https://doi.org/10.1002/aenm.201200346.

    Article  Google Scholar 

  15. ZHANG Zi-he, WU Di-hua, ZHANG Xu, et al. First-principles computational studies on layered Na2Mn3O7 as a high-rate cathode material for sodium ion batteries [J]. Journal of Materials Chemistry A, 2017, 5(25): 12752–12756. DOI: https://doi.org/10.1039/c7ta02609a.

    Article  Google Scholar 

  16. ZHANG Yu, LI Jie, GONG Yang, et al. Exploring oxygen anion charge compensation mechanism in P3-type Na2/3∣xLi1/6Mn5/6O2 cathode material by density function theory [J]. Chemical Physics Letters, 2021, 762: 138016. DOI: https://doi.org/10.1016/j.cplett.2020.138016.

    Article  Google Scholar 

  17. LAASONEN K, CAR R, LEE C, et al. Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics [J]. Physical Review B, Condensed Matter, 1991, 43(8): 6796–6799. DOI: https://doi.org/10.1103/physrevb.43.6796.

    Article  Google Scholar 

  18. PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. DOI: https://doi.org/10.1103/PhysRevLett.77.3865.

    Article  Google Scholar 

  19. LEE D H, XU Jing, MENG Y S. An advanced cathode for Na-ion batteries with high rate and excellent structural stability [J]. Physical Chemistry Chemical Physics, 2013, 15(9): 3304–3312. DOI: https://doi.org/10.1039/c2cp44467d.

    Article  Google Scholar 

  20. SAUBANERE M, MCCALLA E, TARASCON J M. The intriguing question of anionic redox in high-energy density cathodes for Li-ion batteries [J]. Energy Environmental Science, 2016, 9(3): 984–991. DOI: https://doi.org/10.1039/C5EE03048J.

    Article  Google Scholar 

  21. HOUSE R A, MAITRA U, PÉREZ-OSORIO M A, et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes [J]. Nature, 2020, 577(7791): 502–508. DOI: https://doi.org/10.1038/s41586-019-1854-3.

    Article  Google Scholar 

  22. FRISCH U, HASSLACHER B, POMEAU Y. Lattice-gas automata for the navier-stokes equation [J]. Physical Review Letters, 1986, 56(14): 1505–1508. DOI: https://doi.org/10.1103/physrevlett.56.1505.

    Article  Google Scholar 

  23. HE Xiao-yi, LUO Li-shi. Lattice boltzmann model for the incompressible Navier-Stokes equation [J]. Journal of Statistical Physics, 1997, 88(3/4): 927–944. DOI: https://doi.org/10.1023/b:joss.0000015179.12689.e4.

    Article  MathSciNet  Google Scholar 

  24. KATAOKA R, KITTA M, OZAKI H, et al. Spinel manganese oxide: A high capacity positive electrode material for the sodium ion battery [J]. Electrochimica Acta, 2016, 212: 458–464. DOI: https://doi.org/10.1016/j.electacta.2016.07.038.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by ZHANG Yu, LI Jie, ZHANG Hong-liang and DU Ke. LI Jie, ZHANG Hong-liang and DU Ke provided the computing resources and methods. ZHANG Yu, ZHOU Xiang-yuan and WANG Jing-kun established the models and analyzed the calculated data. The initial draft of the manuscript was written by ZHANG Yu and DU Ke. All authors replied to reviewers’ comments and revised the final version.

Corresponding authors

Correspondence to Hong-liang Zhang  (张红亮) or Ke Du  (杜柯).

Additional information

Conflict of interest

ZHANG Yu, LI Jie, ZHANG Hong-liang, DU Ke, ZHOU Xiang-yuan and WANG Jing-kun declare that they have no conflict of interest.

Foundation item: Projects(51602352, 51974373, 51874358, 51772333, 61533020) supported by the National Natural Science Foundation of China; Project(2019JZZY020123) supported by the Major Scientific and Technological Innovation Projects of Shandong Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, J., Zhang, Hl. et al. First-principles computational studies on Na+ diffusion in Li-doped P3-type NaMnO2 as cathode material for Na-ion batteries. J. Cent. South Univ. 29, 2930–2939 (2022). https://doi.org/10.1007/s11771-022-5137-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5137-z

Key words

关键词

Navigation