Skip to main content
Log in

Distortional buckling analysis of steel-concrete composite box beams considering effect of stud rotational restraint under hogging moment

负弯矩作用下考虑栓钉转动约束效应的钢-混凝土组合箱梁畸变屈曲分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Restrained distortional buckling is an important buckling mode of steel-concrete composite box beams (SCCBB) under the hogging moment. Rotational and lateral deformation restraints of the bottom plate by the webs are essential factors affecting SCCBB distortional buckling. Based on the stationary potential energy principle, the analytical expressions for the rotational restraint stiffness (RRS) of the web upper edge as well as the RRS and the lateral restraint stiffness (LRS) of the bottom plate were derived. Also, the SCCBB critical moment formula under the hogging moment was derived. Using twenty specimens, the theoretical calculation method is compared with the finite-element method. Results indicate that the theoretical calculation method can effectively and accurately reflect the restraint effect of the studs, top steel flange, and other factors on the bottom plate. Both the RRS and the LRS have a nonlinear coupling relationship with the external loads and the RRS of the web’s upper edge. Under the hogging moment, the RRS of the web upper edge has a certain influence on the SCCBB distortional buckling critical moment. With increasing RRS of the web upper edge, the SCCBB critical moment increases at first and then tends to be stable.

摘要

约束畸变屈曲是负弯矩作用下钢-混凝土组合箱梁的重要屈曲模式,其中钢梁腹板对钢梁底板的 转动变形和侧向变形的约束是影响钢-混凝土组合箱梁畸变屈曲的重要因素。基于势能驻值原理,推导 了腹板上边缘转动约束刚度、底板转动约束刚度和侧向约束刚度计算公式,建立了负弯矩作用下钢-混 凝土组合箱梁畸变屈曲临界弯矩计算公式。基于20 个算例,将本文理论计算方法与有限元数值计算方 法进行了比较,结果表明:理论计算方法可以有效准确考虑栓钉、钢梁上翼缘等因素对钢梁底板的约 束作用; 钢梁底板转动约束刚度和侧向约束刚度均与外荷载和腹板上边缘转动约束刚度呈非线性耦合 关系; 在负弯矩作用下,腹板上边缘转动约束刚度对组合箱梁畸变屈曲临界弯矩有一定影响,组合箱 梁畸变屈曲临界弯矩随腹板上边缘转动约束刚度的增大呈先增大后趋于稳定的趋势。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. REZAEIAN H, CLIFTON G C, LIM J B P. Failure modes for composite steel deck diaphragms subjected to in-plane shear forces–A review [J]. Engineering Failure Analysis, 2020, 107: 104199. DOI: https://doi.org/10.1016/j.engfailanal.2019.104199.

    Article  Google Scholar 

  2. ZHU Zhi-hui, ZHANG Lei, BAI Yu, et al. Mechanical performance of shear studs and application in steel-concrete composite beams [J]. Journal of Central South University, 2016, 23(10): 2676–2687. DOI: https://doi.org/10.1007/s11771-016-3329-0.

    Article  Google Scholar 

  3. VRCELJ Z, BRADFORD M A. Inelastic restrained distortional buckling of continuous composite T-beams [J]. Journal of Constructional Steel Research, 2009, 65(4): 850–859. DOI: https://doi.org/10.1016/j.jcsr.2008.05.002.

    Article  Google Scholar 

  4. CHANG Guang-li, MENG Yan-yu, NIU Bo-yu. Research of cracking moment in negative moment area of the steel-concrete continuous beam [C]//Proceedings of the 7th International Conference on Education, Management, Information and Mechanical Engineering (EMIM 2017). Shenyang, China; Paris, France: Atlantis Press, 2017. DOI: https://doi.org/10.2991/emim-17.2017.274.

    Book  Google Scholar 

  5. LIAO Wen-yuan, LIU De-wen, DAI Bi-hui. Analysis of uplift force of steel-concrete composite beams under negative moment [C]//Proceedings of the 2017 3rd International Forum on Energy, Environment Science and Materials (IFEESM 2017). Shenzhen, China; Paris, France: Atlantis Press, 2018. DOI: https://doi.org/10.2991/ifeesm-17.2018.28.

    Book  Google Scholar 

  6. NIE Jian-guo. Global shear buckling of corrugated steel plates with edges elastically restrained against rotation [J]. Engineering Mechanics, 2008, 25(3): 1–7. (in Chinese)

    Google Scholar 

  7. CHEN Shi-ming, JIA Yuan-lin. Numerical investigation of inelastic buckling of steel-concrete composite beams prestressed with external tendons [J]. Thin-Walled Structures, 2010, 48(3): 233–242. DOI: https://doi.org/10.1016/j.tws.2009.10.009.

    Article  Google Scholar 

  8. ZHOU Wang-bao, YAN Wang-ji. Refined nonlinear finite element modelling towards ultimate bending moment calculation for concrete composite beams under negative moment [J]. Thin-Walled Structures, 2017, 116: 201–211. DOI: https://doi.org/10.1016/j.tws.2017.02.011.

    Article  Google Scholar 

  9. GONCALVES R, CAMOTIM D. Steel-concrete composite bridge analysis using generalised beam theory [J]. Steel and Composite Structures, 2010, 10(3): 223–243. DOI: https://doi.org/10.12989/scs.2010.10.3.223.

    Article  Google Scholar 

  10. HENRIQUES D, GONÇALVES R, CAMOTIM D. GBT-based finite element to assess the buckling behaviour of steel-concrete composite beams [J]. Thin-Walled Structures, 2016, 107: 207–220. DOI: https://doi.org/10.1016/j.tws.2016.06.005.

    Article  Google Scholar 

  11. AMARAL T V, OLIVEIRA J P S, CALENZANI A F G, et al. Lateral-distortional buckling of continuous steel-concrete composite beam [J]. Revista IBRACON De Estruturas e Materiais, 2018, 11(4): 719–756. DOI: https://doi.org/10.1590/s1983-41952018000400006.

    Article  Google Scholar 

  12. SILVA C C, CALDAS R B, FAKURY R H, et al. Web rotational stiffness of continuous steel-concrete composite castellated beams [J]. Frattura Ed Integrità Strutturale, 2019, 13(50): 264–275. DOI: https://doi.org/10.3221/igf-esis.50.22.

    Article  Google Scholar 

  13. DIAS J V F, OLIVEIRA J P S, CALENZANI A F G, et al. Elastic critical moment of lateral-distortional buckling of steel-concrete composite beams under uniform hogging moment [J]. International Journal of Structural Stability and Dynamics, 2019, 19(7): 1950079. DOI: https://doi.org/10.1142/s0219455419500792.

    Article  MathSciNet  Google Scholar 

  14. LEE D S, BRADFORD M A. Inelastic lateral-distortional buckling of continuously restrained rolled I-beams [J]. Steel and Composite Structures, 2002, 2(4): 297–314. DOI: https://doi.org/10.12989/scs.2002.2.4.297.

    Article  Google Scholar 

  15. JIANG Li-zhong, SUN Lin-lin. The lateral buckling of steel-concrete composite box-beams [J]. Journal of HUST. (Urban Science Edition), 2008(3): 5–9. (in Chinese)

  16. JIANG Li-zhong, QI Jing-jing, SCANLON A, et al. Distortional and local buckling of steel-concrete composite box-beam [J]. Steel & Composite Structures, 2013, 14(3): 243–265. DOI: https://doi.org/10.12989/scs.2013.14.3.243.

    Article  Google Scholar 

  17. SVENSSON S E. Lateral buckling of beams analysed as elastically supported columns subject to a varying axial force [J]. Journal of Constructional Steel Research, 1985, 5(3): 179–193. DOI: https://doi.org/10.1016/0143-974X(85)90002-1.

    Article  Google Scholar 

  18. WILLIAMS F W, JEMAH A K. Buckling curves for elastically supported columns with varying axial force, to predict lateral buckling of beams [J]. Journal of Constructional Steel Research, 1987, 7(2): 133–147. DOI: https://doi.org/10.1016/0143-974X(87)90025-3.

    Article  Google Scholar 

  19. GOLTERMANN P, SVENSSON S E. Lateral distortional buckling: Predicting elastic critical stress [J]. Journal of Structural Engineering, 1988, 114(7): 1606–1625. DOI: https://doi.org/10.1061/(asce)0733-9445(1988)114:7(1606).

    Article  Google Scholar 

  20. RONAGH H R. Progress in the methods of analysis of restricted distortional buckling of composite bridge girders [J]. Progress in Structural Engineering and Materials, 2001, 3(2): 141–148. DOI: https://doi.org/10.1002/pse.80.

    Article  Google Scholar 

  21. YE Ji-hong, CHEN Wei. Elastic restrained distortional buckling of steel-concrete composite beams based on elastically supported column method [J]. International Journal of Structural Stability and Dynamics, 2013, 13(1): 1350001. DOI: https://doi.org/10.1142/s0219455413500016.

    Article  MathSciNet  Google Scholar 

  22. CHEN Wei, YE Ji-hong. Elastic lateral and restrained distortional buckling of doubly symmetric i-beams [J]. International Journal of Structural Stability and Dynamics, 2010, 10(5): 983–1016. DOI: https://doi.org/10.1142/s0219455410003865.

    Article  MathSciNet  Google Scholar 

  23. GUO Feng-qi, ZHOU Shun, JIANG Li-zhong. Lateral buckling analysis of the steel-concrete composite beams in negative moment region [J]. Advances in Materials Science and Engineering, 2015, 2015: 763634. DOI: https://doi.org/10.1155/2015/763634.

    Article  Google Scholar 

  24. ZHOU Wang-bao, LI Shu-jin, JIANG Li-zhong, et al. Distortional buckling calculation method of steel-concrete composite box beam in negative moment area [J]. Steel and Composite Structures, 2015, 19(5): 1203–1219. DOI: https://doi.org/10.12989/scs.2015.19.5.1203.

    Article  Google Scholar 

  25. ZHOU Wang-bao, LI Shu-jin, HUANG Zhi, et al. Distortional buckling of I-steel concrete composite beams in negative moment area [J]. Steel and Composite Structures, 2016, 20(1): 57–70. DOI: https://doi.org/10.12989/scs.2016.20.1.057.

    Article  Google Scholar 

  26. ZHOU Wang-bao, JIANG Li-zhong, KANG Jun-tao, et al. Distortional buckling analysis of steel-concrete composite girders in negative moment area [J]. Mathematical Problems in Engineering, 2014, 2014: 635617. DOI: https://doi.org/10.1155/2014/635617.

    MATH  Google Scholar 

  27. TIMOSHENKO S. Theory of elastic stability [M]. 2nd Edition. New York: Dover Publications Inc, 2009.

    Google Scholar 

  28. JAMES M, BARRY J. Mechanics of materials [M]. 7th Edition ed. Toronto: CL Engineering, 2008.

    Google Scholar 

  29. ZHOU Wang-bao, JIANG Li-zhong, LIU Zhi-jie, et al. Closed-form solution for shear lag effects of steel-concrete composite box beams considering shear deformation and slip [J]. Journal of Central South University, 2012, 19(10): 2976–2982. DOI: https://doi.org/10.1007/s11771-012-1366-x.

    Article  Google Scholar 

  30. ZHOU Wang-bao, JIANG Li-zhong, LIU Zhi-jie, et al. Closed-form solution to thin-walled box girders considering effects of shear deformation and shear lag [J]. Journal of Central South University, 2012, 19(9): 2650–2655. DOI: https://doi.org/10.1007/s11771-012-1323-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JIANG Li-zhong, NIE Lei-xin, and ZHOU Wang-bao provided the concept and edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Wang-bao Zhou  (周旺保).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Foundation item: Projects(U1934207, 52078487, 51778630) supported by the National Natural Science Foundations of China; Project (502501006) supported by the Fundamental Research Funds for the Central Universities, China; Project(2019RS3009) supported by the Hunan Innovative Provincial Construction Project, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Lz., Nie, Lx., Zhou, Wb. et al. Distortional buckling analysis of steel-concrete composite box beams considering effect of stud rotational restraint under hogging moment. J. Cent. South Univ. 29, 3158–3170 (2022). https://doi.org/10.1007/s11771-022-5130-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5130-6

Key words

关键词

Navigation