Skip to main content
Log in

Boosting catalytic activities of carbon felt electrode towards redox reactions of vanadium ions by defect engineering

利用缺陷工程提高碳毡电极对钒离子的氧化还原催化活性

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Vanadium redox flow batteries (VRFBs) are one of the most promising energy storage systems owing to their safety, efficiency, flexibility and scalability. However, the commercial viability of VRFBs is still hindered by the low electrochemical performance of the available carbon-based electrodes. Defect engineering is a powerful strategy to enhance the redox catalytic activity of carbon-based electrodes for VRFBs. In this paper, uniform carbon defects are introduced on the surfaces of carbon felt (CF) electrode by Ar plasma etching. Together with a higher specific surface area, the Ar plasma treated CF offers additional catalytic sites, allowing faster and more reversible oxidation/reduction reactions of vanadium ions. As a result, the VRFB using plasma treated electrode shows a power density of 1018.3 mW/cm2, an energy efficiency (EE) of 84.5%, and the EE remains stable over 1000 cycles.

摘要

钒氧化还原液流电池(钒液流电池)因其安全性、高效性、灵活性和可扩展性成为最有前途的储 能系统之一。然而,现有的碳基电极较低的电化学性能阻碍了钒液流电池的商业化应用,缺陷工程是 提高钒液流电池用碳基电极氧化还原催化活性的有效策略。本文采用氩气等离子体刻蚀法在碳毡电极 表面引入均匀的碳缺陷结构,使其具有更高的比表面积和额外的催化位点,促进了钒离子氧化还原反 应的可逆性。结果表明,采用等离子体处理碳毡电极的钒液流电池的功率密度提高到1018.3 mW/cm2, 能量效率为84.5%,且在1000次充放电循环后仍能保持稳定。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YANG Xiao-fei, ZHANG Hong-zhang, CHEN Yu-qing, et al. Shapeable electrodes with extensive materials options and ultra-high loadings for energy storage devices [J]. Nano Energy, 2017, 39: 418–428. DOI: https://doi.org/10.1016/j.nanoen.2017.07.028.

    Article  Google Scholar 

  2. LU Wen-jing, LI Xian-feng, ZHANG Hua-min. The next generation vanadium flow batteries with high power density—A perspective [J]. Physical Chemistry Chemical Physics: PCCP, 2017, 20(1): 23–35. DOI: https://doi.org/10.1039/c7cp07456e.

    Article  Google Scholar 

  3. ZHENG Qiong, XING Feng, LI Xian-feng, et al. Flow field design and optimization based on the mass transport polarization regulation in a flow-through type vanadium flow battery [J]. Journal of Power Sources, 2016, 324: 402–411. DOI: https://doi.org/10.1016/j.jpowsour.2016.05.110.

    Article  Google Scholar 

  4. YE Jia-ye, WU Chun, QIN Wei, et al. Advanced sulfonated poly(ether ether ketone)/graphene-oxide/titanium dioxide nanoparticle composited membrane with superior cyclability for vanadium redox flow battery [J]. Journal of Nanoscience and Nanotechnology, 2020, 20(8): 4714–4721. DOI: https://doi.org/10.1166/jnn.2020.18503.

    Article  Google Scholar 

  5. LOU Xue-chun, YUAN Du, YU Yue-sheng, et al. A cost-effective nafion composite membrane as an effective vanadium-ion barrier for vanadium redox flow batteries [J]. Chemistry—An Asian Journal, 2020, 15(15): 2357–2363. DOI: https://doi.org/10.1002/asia.202000140.

    Article  Google Scholar 

  6. YE Jia-ye, YUAN Du, DING Mei, et al. A cost-effective nafion/lignin composite membrane with low vanadium ion permeation for high performance vanadium redox flow battery [J]. Journal of Power Sources, 2021, 482: 229023. DOI: https://doi.org/10.1016/j.jpowsour.2020.229023.

    Article  Google Scholar 

  7. HUANG Yu-qing, HUO Jia, DOU Shuo, et al. Graphitic C3N4 as a powerful catalyst for all-vanadium redox flow batteries [J]. RSC Advances, 2016, 6(70): 66368–66372. DOI: https://doi.org/10.1039/c6ra11381h.

    Article  Google Scholar 

  8. XIA Lu, LONG Ting, LI Wen-yue, et al. Highly stable vanadium redox-flow battery assisted by redox-mediated catalysis [J]. Small, 2020, 16(38): e2003321. DOI: https://doi.org/10.1002/smll.202003321.

    Article  Google Scholar 

  9. DAI Qing, LIU Zhi-qiang, HUANG Ling, et al. Thin-film composite membrane breaking the trade-off between conductivity and selectivity for a flow battery [J]. Nature Communications, 2020, 11: 13. DOI: https://doi.org/10.1038/s41467-019-13704-2.

    Article  Google Scholar 

  10. LI Zhe-jun, LU Yi-chun. Material design of aqueous redox flow batteries: Fundamental challenges and mitigation strategies [J]. Advanced Materials, 2020, 32(47): 2002132. DOI: https://doi.org/10.1002/adma.202002132.

    Article  Google Scholar 

  11. MEN Yue, SUN Ting. Carbon felts electrode treated in different weak acid solutions through electrochemical oxidation method for all vanadium redox flow battery [J]. International Journal of Electrochemical Science, 2012, 7(4): 3482–3488. DOI: https://doi.org/10.1016/j.jpowsour.2012.01.007.

    Google Scholar 

  12. PEZESHKI A M, CLEMENT J T, VEITH G M, et al. High performance electrodes in vanadium redox flow batteries through oxygen-enriched thermal activation [J]. Journal of Power Sources, 2015, 294: 333–338. DOI: https://doi.org/10.1016/j.jpowsour.2015.05.118.

    Article  Google Scholar 

  13. LIU Tao, LI Xian-feng, XU Chi, et al. Activated carbon fiber paper based electrodes with high electrocatalytic activity for vanadium flow batteries with improved power density [J]. ACS Applied Materials & Interfaces, 2017, 9(5): 4626–4633. DOI: https://doi.org/10.1021/acsami.6b14478.

    Article  Google Scholar 

  14. GREESE T, LOICHET TORRES P A, MENGA D, et al. Impact of plasma and thermal treatment on the long-term performance of vanadium redox flow electrodes-significance of surface structure vs oxygen functionalities [J]. Journal of the Electrochemical Society, 2021, 168(7): 070554. DOI: https://doi.org/10.1149/1945-7111/ac163e.

    Article  Google Scholar 

  15. DIXON D, BABU D J, LANGNER J, et al. Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application [J]. Journal of Power Sources, 2016, 332: 240–248. DOI: https://doi.org/10.1016/j.jpowsour.2016.09.070.

    Article  Google Scholar 

  16. KIM K J, KIM Y J, KIM J H, et al. The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries [J]. Materials Chemistry and Physics, 2011, 131(1–2): 547–553. DOI: https://doi.org/10.1016/j.matchemphys.2011.10.022.

    Article  Google Scholar 

  17. MEI Ting-ting, GAO Ming, LIU Dan-ni, et al. Enhanced electrocatalytic activity of carbon cloth by synergetic effect of plasma and acid treatment [J]. Plasma Science and Technology, 2021, 23(2): 025504. DOI: https://doi.org/10.1088/2058-6272/abd8b4.

    Article  Google Scholar 

  18. TSENG T M, HUANG R H, HUANG C Y, et al. A kinetic study of the platinum/carbon anode catalyst for vanadium redox flow battery [J]. Journal of the Electrochemical Society A, 2013, 160(4): 690–696. DOI: https://doi.org/10.1149/2.073304jes.

    Article  Google Scholar 

  19. WANG W H, WANG X D. Investigation of Ir-modified carbon felt as the positive electrode of an all-vanadium redox flow battery [J]. Electrochimica Acta, 2007, 52(24): 6755–6762. DOI: https://doi.org/10.1016/j.electacta.2007.04.121.

    Article  Google Scholar 

  20. WEI L, ZHAO T S, ZENG L, et al. Copper nanoparticle-deposited graphite felt electrodes for all vanadium redox flow batteries [J]. Applied Energy, 2016, 180: 386–391. DOI: https://doi.org/10.1016/j.apenergy.2016.07.134.

    Article  Google Scholar 

  21. LI Bin, GU Meng, NIE Zi-min, et al. Bismuth nanoparticle decorating graphite felt as a high-performance electrode for an all-vanadium redox flow battery [J]. Nano Letters, 2013, 13(3): 1330–1335. DOI: https://doi.org/10.1021/nl400223v.

    Article  Google Scholar 

  22. LONG Ting, LONG Yong, DING Mei, et al. Large scale preparation of 20 cm × 20 cm graphene modified carbon felt for high performance vanadium redox flow battery [J]. Nano Research, 2021, 14(10): 3538–3544. DOI: https://doi.org/10.1007/s12274-021-3564-z.

    Article  Google Scholar 

  23. XIANG Wei-zhe, XU Jian, ZHANG Yi-qiong, et al. A high-performance ammonia plasma-treated WO3 @carbon felt electrode for vanadium redox flow batteries [J]. Functional Materials Letters, 2021, 14(7): 2143009–2143013. DOI: https://doi.org/10.1142/s1793604721430098.

    Article  Google Scholar 

  24. HA S, GALLAGHER K G. Estimating the system price of redox flow batteries for grid storage [J]. Journal of Power Sources, 2015, 296: 122–132. DOI: https://doi.org/10.1016/j.jpowsour.2015.07.004.

    Article  Google Scholar 

  25. WANG Wei, LUO Qing-tao, LI Bin, et al. Recent progress in redox flow battery research and development [J]. Advanced Functional Materials, 2013, 23(8): 970–986. DOI: https://doi.org/10.1002/adfm.201200694.

    Article  Google Scholar 

  26. DING Cong, ZHANG Hua-min, LI Xian-feng, et al. Vanadium flow battery for energy storage: Prospects and challenges [J]. The Journal of Physical Chemistry Letters, 2013, 4(8): 1281–1294. DOI: https://doi.org/10.1021/jz4001032.

    Article  Google Scholar 

  27. ZHANG Yi-qiong, TAO Li, XIE Chao, et al. Defect engineering on electrode materials for rechargeable batteries [J]. Advanced Materials, 2020, 32(7): e1905923. DOI: https://doi.org/10.1002/adma.201905923.

    Article  Google Scholar 

  28. ZHU Jia-wei, MU Shi-chun. Defect engineering in carbon-based electrocatalysts: Insight into intrinsic carbon defects [J]. Advanced Functional Materials, 2020, 30(25): 2001097. DOI: https://doi.org/10.1002/adfm.202001097.

    Article  Google Scholar 

  29. HE Zhang-xing, JIANG Ying-qiao, MENG Wei, et al. HF/H2O2 treated graphite felt as the positive electrode for vanadium redox flow battery [J]. Applied Surface Science, 2017, 423: 111–118. DOI: https://doi.org/10.1016/j.apsusc.2017.06.154.

    Article  Google Scholar 

  30. GAO Yu, WANG Hong-rui, MA Qiang, et al. Carbon sheet-decorated graphite felt electrode with high catalytic activity for vanadium redox flow batteries [J]. Carbon, 2019, 148: 9–15. DOI: https://doi.org/10.1016/j.carbon.2019.03.035.

    Article  Google Scholar 

  31. LIU Zhi-juan, ZHAO Zheng-hang, WANG Yan-yong, et al. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis [J]. Advanced Materials, 2017, 29(18): 1606207. DOI: https://doi.org/10.1002/adma.201606207.

    Article  Google Scholar 

  32. ZHANG Yi-qiong, XU Jian, LONG Yong, et al. Defect chemistry on electrode materials for electrochemical energy storage and conversion [J]. ChemNanoMat, 2020, 6(11): 1589–1600. DOI: https://doi.org/10.1002/cnma.202000437.

    Article  Google Scholar 

  33. DIXON D, BABU D J, BHASKAR A, et al. Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode [J]. Beilstein Journal of Nanotechnology, 2019, 10: 1698–1706. DOI: https://doi.org/10.3762/bjnano.10.165.

    Article  Google Scholar 

  34. BLASI A D, BLASI O D, BRIGUGLIO N, et al. Investigation of several graphite-based electrodes for vanadium redox flow cell [J]. Journal of Power Sources, 2013, 227: 15–23. DOI: https://doi.org/10.1016/j.jpowsour.2012.10.098.

    Article  Google Scholar 

  35. JIANG H R, SHYY W, ZENG L, et al. Highly efficient and ultra-stable boron-doped graphite felt electrodes for vanadium redox flow batteries [J]. Journal of Materials Chemistry A, 2018, 6(27): 13244–13253. DOI: https://doi.org/10.1039/c8ta03388a.

    Article  Google Scholar 

  36. MUKHOPADHYAY A, YANG Yang, LI Yi-fan, et al. Mass transfer and reaction kinetic enhanced electrode for high-performance aqueous flow batteries [J]. Advanced Functional Materials, 2019, 29(43): 1903192. DOI: https://doi.org/10.1002/adfm.201903192.

    Article  Google Scholar 

  37. FERRARI A C, BASKO D M. Raman spectroscopy as a versatile tool for studying the properties of graphene [J]. Nature Nanotechnology, 2013, 8(4): 235–246. DOI: https://doi.org/10.1038/nnano.2013.46.

    Article  Google Scholar 

  38. HOSSEINI M G, MOUSAVIHASHEMI S, MURCIA-LÓPEZ S, et al. High-power positive electrode based on synergistic effect of N- and WO3-decorated carbon felt for vanadium redox flow batteries [J]. Carbon, 2018, 136: 444–453. DOI: https://doi.org/10.1016/j.carbon.2018.04.038.

    Article  Google Scholar 

  39. LI Wen-yue, ZHANG Zhen-yu, TANG Yong-bing, et al. Graphene-nanowall-decorated carbon felt with excellent electrochemical activity toward \({\rm{VO}}_2^ + /{\rm{V}}{{\rm{O}}^{2 + }}\) couple for all vanadium redox flow battery [J]. Advanced Science, 2016, 3(4): 1500276. DOI: https://doi.org/10.1002/advs.201500276.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JIA Chuan-kun conceived the experiment, obtained funding and provided resources. XU Jian conducted the main experiments, analyzed the measured data and wrote the draft. ZHANG Yi-qiong provided some experimental guides. ZHU Xiao-bo reviewed and edited the draft of the manuscript. LONG Ting processed some experimental data. XU He processed some data and conceived the schematic. LOU Xue-chun, XU Zhi-zhao, FU Hu and XIE Ming-ming performed some experiment and assisted in analyzing relevant data. XIANG Wei-zhe assisted in responding to the review comments.

Corresponding author

Correspondence to Chuan-kun Jia  (贾传坤).

Additional information

Conflict of interest

XU Jian, ZHANG Yi-qiong, ZHU Xiao-bo, LONG Ting, XU He, LOU Xue-chun, XU Zhi-zhao, FU Hu, XIANG Wei-zhe, XIE Ming-ming, and JIA Chuan-kun declare that they have no conflict of interest.

Foundation item: Project(Xiang Zu [2016] 91) supported by the “100 Talented Teams” of Hunan Province, China; Project(2018RS3077) supported by the Huxiang High-level Talents Program, China; Project(22002009) supported by the National Natural Science Foundation of China; Project(2021JJ40565) supported by the Natural Science Foundation of Hunan Province, China; Project(19C0054) supported by the Scientific Research Foundation of Hunan Provincial Education Department, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhang, Yq., Zhu, Xb. et al. Boosting catalytic activities of carbon felt electrode towards redox reactions of vanadium ions by defect engineering. J. Cent. South Univ. 29, 2956–2967 (2022). https://doi.org/10.1007/s11771-022-5129-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5129-z

Key words

关键词

Navigation