Skip to main content
Log in

MoSe2@N, P-C composites for sodium ion battery

钠离子电池复合负极材料MoSe2@N,P-C的合成与性能研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The conversion reaction-based anode materials of sodium ion batteries have relatively high capacity; however, the application of these materials is limited by their structural collapse due to the poor structure stability. In this work, MoSe2 nanosheets were synthesized by a solvothermal method. An organic solvent was intercalated into the MoSe2 materials to enlarge the interlayer spacing and improve the conductivity of the material. The MoSe2 material was coated with an organic pyrolysis carbon and then a uniform carbon layer was formed. The surface carbon hybridization of the nanosheet materials was realized by the introduction of heteroatoms during the sintering process. The as-prepared MoSe2@N, P-C composites showed a superior rate performance as it could maintain the integrity of the morphology and structure under a high current density. The composites had a discharge specific capacity of 302.4 mA·h/g after 100 cycles at 0.5 A/g, and the capacity retention rate was 84.96%.

摘要

在钠离子电池体系中,基于转化反应机理的负极材料具有极高的比容量。然而,这类材料的结 构稳定性差,可能出现结构坍塌,限制其应用。本文采用水热法,合成了MoSe2@N, P-C 复合材料, 作为钠离子电池负极材料。以有机溶剂作为插层剂,扩大MoSe2纳米片的层间距,从而提升其导电能 力,并在后续烧结过程中引入碳源,使MoSe2表面形成独特的碳层,实现纳米材料的表面杂化。这种 方法制备的MoSe2@N, P-C 复合材料表现出优异的倍率性能,在大电流密度下进行充放电仍能维持其 结构稳定。在0.5 A/g 恒定电流密度下循环100 圈后,其放电容量达302.4 mA·h/g,容量保持率为 84.96%。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LI Mei, MA Chao, ZHU Qian-cheng, et al. Well-ordered mesoporous Fe2O3/C composites as high performance anode materials for sodium-ion batteries [J]. Dalton Transactions, 2017, 46(15): 5025–5032. DOI: https://doi.org/10.1039/c7dt00540g.

    Article  Google Scholar 

  2. YABUUCHI N, KUBOTA K, DAHBI M, et al. Research development on sodium-ion batteries [J]. Chemical Reviews, 2014, 114(23): 11636–11682. DOI: https://doi.org/10.1021/cr500192f.

    Article  Google Scholar 

  3. SLATER M D, KIM D, LEE E, et al. Sodium-ion batteries [J]. Advanced Functional Materials, 2013, 23(8): 947–958. DOI: https://doi.org/10.1002/adfm.201200691.

    Article  Google Scholar 

  4. ZHANG Wen-li, ZHANG Fan, MING Fang-wang, et al. Sodium-ion battery anodes: Status and future trends [J]. Energy Chem, 2019, 1(2): 100012. DOI: https://doi.org/10.1016/j.enchem.2019.100012.

    Article  Google Scholar 

  5. TIAN Yuan, AN Yong-ling, WEI Chuan-liang, et al. Recently advances and perspectives of anode-free rechargeable batteries [J]. Nano Energy, 2020, 78: 105344. DOI: https://doi.org/10.1016/j.nanoen.2020.105344.

    Article  Google Scholar 

  6. PERVEEN T, SIDDIQ M, SHAHZAD N, et al. Prospects in anode materials for sodium ion batteries—A review [J]. Renewable and Sustainable Energy Reviews, 2020, 119: 109549. DOI: https://doi.org/10.1016/j.rser.2019.109549.

    Article  Google Scholar 

  7. GANDI S, VADDADI V S C S, PANDA S S S, et al. Recent progress in the development of glass and glass-ceramic cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: A review [J]. Journal of Power Sources, 2022, 521: 230930. DOI: https://doi.org/10.1016/j.jpowsour.2021.230930.

    Article  Google Scholar 

  8. WANG Yan, ZHU Ming, LIU Hao-xuan, et al. Carbon-based Current collector materials for sodium metal anodes [J]. New Carbon Materials, 2022, 37(1): 93–108. DOI: https://doi.org/10.1016/S1872-5805(22)60581-X.

    Article  Google Scholar 

  9. BALOGUN M S, LUO Yang, QIU Wei-tao, et al. A review of carbon materials and their composites with alloy metals for sodium ion battery anodes [J]. Carbon, 2016, 98: 162–178. DOI: https://doi.org/10.1016/j.carbon.2015.09.091.

    Article  Google Scholar 

  10. LIU Yong-chang, ZHANG Ning, JIAO Li-fang, et al. Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries [J]. Advanced Functional Materials, 2015, 25(2): 214–220. DOI: https://doi.org/10.1002/adfm.201402943.

    Article  Google Scholar 

  11. ZHANG Yao, SUN Miao, SHI Wei-wei, et al. Arsenic trioxide suppresses transcription of hTERT through down-regulation of multiple transcription factors in HL-60 Leukemia cells [J]. Toxicology Letters, 2015, 232(2): 481–489. DOI: https://doi.org/10.1016/j.toxlet.2014.11.028.

    Article  Google Scholar 

  12. PANG Yuan-chao, ZHENG Yan-zhen. Influence of the metal ions on the allylic rearrangement reaction of 3, 4, 5, 6-tetrahydrophthalic anhydride [J]. Chinese Journal of Chemistry, 2015, 33(12): 1347–1352. DOI: https://doi.org/10.1002/cjoc.201500615.

    Article  Google Scholar 

  13. PANG Yuan-chao, HOU Xiu-fang, QIN Lei, et al. Observation of allylic rearrangement in water-rich reaction [J]. Chemical Communications, 2014, 50(22): 2910–2912. DOI: https://doi.org/10.1039/c3cc49287g.

    Article  Google Scholar 

  14. SHEN Yong-qiang, WANG Xian-you, HU Hai, et al. Sheet-like structure FeF3/graphene composite as novel cathode material for Na ion batteries [J]. RSC Advances, 2015, 5(48): 38277–38282. DOI: https://doi.org/10.1039/c5ra02235e.

    Article  Google Scholar 

  15. KONG Peng, ZHU Ling, LI Feng-rong, et al. Self-supporting electrode composed of SnSe nanosheets, thermally treated protein, and reduced graphene oxide with enhanced pseudocapacitance for advanced sodium-ion batteries [J]. Chem Electro Chem, 2019, 6(22): 5642–5650. DOI: https://doi.org/10.1002/celc.201901517.

    Google Scholar 

  16. LI Zhi-fei, JIAN Ze-lang, WANG Xing-feng, et al. Hard carbon anodes of sodium-ion batteries: Undervalued rate capability [J]. Chemical Communications (Cambridge, England), 2017, 53(17): 2610–2613. DOI: https://doi.org/10.1039/c7cc00301c.

    Article  Google Scholar 

  17. LUO Wei, SCHARDT J, BOMMIER C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries [J]. Journal of Materials Chemistry A, 2013, 1(36): 10662. DOI: https://doi.org/10.1039/c3ta12389h.

    Article  Google Scholar 

  18. FAN Qing-jie, ZHANG Wu-xing, DUAN Jian, et al. Effects of binders on electrochemical performance of nitrogen-doped carbon nanotube anode in sodium-ion battery [J]. Electrochimica Acta, 2015, 174: 970–977. DOI: https://doi.org/10.1016/j.electacta.2015.06.039.

    Article  Google Scholar 

  19. WANG Zhao-hui, QIE Long, YUAN Li-xia, et al. Functionalized N-doped interconnected carbon nanofibers as an anode material for sodium-ion storage with excellent performance [J]. Carbon, 2013, 55: 328–334. DOI: https://doi.org/10.1016/j.carbon.2012.12.072.

    Article  Google Scholar 

  20. STEVENS D A, DAHN J R. High capacity anode materials for rechargeable sodium-ion batteries [J]. Journal of the Electrochemical Society, 2000, 147(4): 1271. DOI: https://doi.org/10.1149/1.1393348.

    Article  Google Scholar 

  21. KOMABA S, MURATA W, ISHIKAWA T, et al. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries [J]. Advanced Functional Materials, 2011, 21(20): 3859–3867. DOI: https://doi.org/10.1002/adfm.201100854.

    Article  Google Scholar 

  22. WANG Huan-lei, YU Wen-hua, SHI Jing, et al. Biomass derived hierarchical porous carbons as high-performance anodes for sodium-ion batteries [J]. Electrochimica Acta, 2016, 188: 103–110. DOI: https://doi.org/10.1016/j.electacta.2015.12.002.

    Article  Google Scholar 

  23. XU Chun-xiao, LI Ya-yong, ADAMS R A, et al. One-step combustion synthesis of carbon-coated NiO/Ni composites for lithium and sodium storage [J]. Journal of Alloys and Compounds, 2021, 884: 160927. DOI: https://doi.org/10.1016/j.jallcom.2021.160927.

    Article  Google Scholar 

  24. ZHANG Hong-shuai, MENG Yan-shuang, AHMED W H Z, et al. FeS under wrinkled thin-layer carbon derived from ionic liquid as a high-performance sodium-ion battery anode material [J]. Journal of Electroanalytical Chemistry, 2021, 886: 115102. DOI: https://doi.org/10.1016/j.jelechem.2021.115102.

    Article  Google Scholar 

  25. MA Hao, WANG Tian-yi, LI Jia-bao, et al. Nitrogen doped carbon coated Bi microspheres as high-performance anode for half and full sodium ion batteries [J]. Chemistry — An Asian Journal, 2021, 16(16): 2314–2320. DOI: https://doi.org/10.1002/asia.202100519.

    Article  Google Scholar 

  26. ZHU Xiao-ming, LI Qian, QIU Shen, et al. Hard carbon fibers pyrolyzed from wool as high-performance anode for sodium-ion batteries [J]. JOM, 2016, 68(10): 2579–2584. DOI: https://doi.org/10.1007/s11837-016-2064-1.

    Article  Google Scholar 

  27. DARWICHE A, MARINO C, SOUGRATI M T, et al. Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: An unexpected electrochemical mechanism [J]. Journal of the American Chemical Society, 2012, 134(51): 20805–20811. DOI: https://doi.org/10.1021/ja310347x.

    Article  Google Scholar 

  28. FARBOD B, CUI Kai, KALISVAART W P, et al. Anodes for sodium ion batteries based on tin-germanium-antimony alloys [J]. ACS Nano, 2014, 8(5): 4415–4429. DOI: https://doi.org/10.1021/nn4063598.

    Article  Google Scholar 

  29. XIAO Li-fen, CAO Yu-liang, XIAO Jie, et al. High capacity, reversible alloying reactions in SnSb/C nanocomposites for Na-ion battery applications [J]. Chemical Communications (Cambridge, England), 2012, 48(27): 3321–3323. DOI: https://doi.org/10.1039/c2cc17129e.

    Article  Google Scholar 

  30. HU Zhe, WANG Li-xiu, ZHANG Kai, et al. MoS2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries [J]. Angewandte Chemie International Edition, 2014, 53(47): 12794–12798. DOI: https://doi.org/10.1002/anie.201407898.

    Article  Google Scholar 

  31. LIAO Jin-yun, MANTHIRAM A. High-performance Na2Ti2O5 nanowire arrays coated with VS2 nanosheets for sodium-ion storage [J]. Nano Energy, 2015, 18: 20–27. DOI: https://doi.org/10.1016/j.nanoen.2015.09.014.

    Article  Google Scholar 

  32. SU Da-wei, DOU Shi-xue, WANG Guo-xiu. WS2@graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances [J]. Chemical Communications (Cambridge, England), 2014, 50(32): 4192–4195. DOI: https://doi.org/10.1039/c4cc00840e.

    Article  Google Scholar 

  33. YANG E, JI H, JUNG Y. Two-dimensional transition metal dichalcogenide monolayers as promising sodium ion battery anodes [J]. The Journal of Physical Chemistry C, 2015, 119(47): 26374–26380. DOI: https://doi.org/10.1021/acs.jpcc.5b09935.

    Article  Google Scholar 

  34. XIONG Hui, SLATER M D, BALASUBRAMANIAN M, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries [J]. The Journal of Physical Chemistry Letters, 2011, 2(20): 2560–2565. DOI: https://doi.org/10.1021/jz2012066.

    Article  Google Scholar 

  35. YANG Fu-hua, ZHANG Zhi-an, HAN Yu, et al. TiO2/carbon hollow spheres as anode materials for advanced sodium ion batteries [J]. Electrochimica Acta, 2015, 178: 871–876. DOI: https://doi.org/10.1016/j.electacta.2015.08.051.

    Article  Google Scholar 

  36. HUANG Kang-sheng, YAN Chen-xing, WANG Kang, et al. Phases hybriding and graphene-like TiO2 for high-performance Na-ion batteries [J]. Journal of Alloys and Compounds, 2016, 687: 683–688. DOI: https://doi.org/10.1016/j.jallcom.2016.06.174.

    Article  Google Scholar 

  37. LIU Sai-nan, CAI Zhen-yang, ZHOU Jiang, et al. Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications [J]. Journal of Materials Chemistry A, 2016, 4(47): 18278–18283. DOI: https://doi.org/10.1039/c6ta08472a.

    Article  Google Scholar 

  38. HU Zhe, LIU Qian-nan, CHOU Shu-lei, et al. Advances and challenges in metal sulfides/selenides for next-generation rechargeable sodium-ion batteries [J]. Advanced Materials, 2017, 29(48): 1700606. DOI: https://doi.org/10.1002/adma.201700606.

    Article  Google Scholar 

  39. ZHANG Yi, LIU Zheng-qing, ZHAO Hong-yang, et al. MoSe2 nanosheets grown on carbon cloth with superior electrochemical performance as flexible electrode for sodium ion batteries [J]. RSC Advances, 2016, 6(2): 1440–1444. DOI: https://doi.org/10.1039/c5ra24852c.

    Article  Google Scholar 

  40. ZHANG Jun-jun, KANG Wen-pei, JIANG Miao, et al. Conversion of 1T-MoSe2 to 2H-MoS2xSe2−2x mesoporous nanospheres for superior sodium storage performance [J]. Nanoscale, 2017, 9(4): 1484–1490. DOI: https://doi.org/10.1039/c6nr09166k.

    Article  Google Scholar 

  41. WANG Jin, LIU Gui-yu, FAN Kai-li, et al. N-doped carbon coated anatase TiO2 nanoparticles as superior Na-ion battery anodes [J]. Journal of Colloid and Interface Science, 2018, 517: 134–143. DOI: https://doi.org/10.1016/j.jcis.2018.02.001.

    Article  Google Scholar 

  42. TANG Lin-bo, ZHANG Bao, AN Chang-sheng, et al. Ultrahigh-rate behavior anode materials of MoSe2 nanosheets anchored on dual-heteroatoms functionalized graphene for sodium-ion batteries [J]. Inorganic Chemistry, 2019, 58(12): 8169–8178. DOI: https://doi.org/10.1021/acs.inorgchem.9b00971.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TANG Lin-bo provided the concept and edited the draft of manuscript. PENG Tao and LUO Yu-hong conducted the literature review and wrote the first draft of the manuscript. HE Zhen-jiang, YAN Cheng, MAO Jing, DAI Ke-hua, WU Xian-wen and ZHENG Jun-chao edited the draft of manuscript.

Corresponding authors

Correspondence to Lin-bo Tang  (汤林波) or Jun-chao Zheng  (郑俊超).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships to influence the work reported in this paper.

Foundation item: Project(51572300) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, T., Luo, Yh., Tang, Lb. et al. MoSe2@N, P-C composites for sodium ion battery. J. Cent. South Univ. 29, 2991–3002 (2022). https://doi.org/10.1007/s11771-022-5126-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5126-2

Key words

关键词

Navigation