Skip to main content
Log in

Band gap modulation of nanostructured WO3 nanoplate film by Ti doping for enhanced photoelectrochemical performance

Ti掺杂的WO3纳米片光阳极的能带调控和光电化学分解水性能

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Despite being a promising photoanode material for water splitting, WO3 has low conductivity, high onset potential, and sluggish water oxidation kinetics. In this study, we designed Ti-doped WO3 nanoplate arrays on fluoride-doped tin oxide by a seed-free hydrothermal method, and the effects of doping on the photoelectrochemical performance were investigated. The optimal Ti-doped WO3 electrode achieved a photocurrent density of 0.53 mA/cm2 at 0.6 V (vs Ag/AgCl), 110% higher than that of pure WO3 nanoplate arrays. Moreover, a significant cathodic shift in the onset potential was observed after doping. X-ray photoelectron spectroscopy valence band and ultraviolet — visible spectra revealed that the band positions of Ti-doped WO3 photoanodes moved upward, yielding a lower onset potential. Furthermore, electrochemical impedance spectroscopy measurements revealed that the conductivities of the WO3 photoanodes improved after doping, because of the rapid separation of photo-generated charge carriers. Thus, we report a new design route toward efficient and low-cost photoanodes for photoelectrochemical applications.

摘要

氧化钨(WO3)是一种重要的光电化学分解水半导体,具有可见光响应好、无毒、稳定性好等优 点,但低的电导率、高的起始电位以及缓慢的水氧化动力学等缺点也限制了其进一步应用。本文采用 无晶种水热法在导电玻璃(FTO)上设计了一种钛掺杂的WO3纳米片阵列,并研究了Ti 掺杂浓度对光电 化学分解水性能的影响。结果表明,在0.6 V(vs Ag/AgCl)的偏压下,Ti 掺杂WO3光电流密度最高,可 达0.53 mA/cm2,比纯WO3纳米片阵列的高110%。同时,Ti 掺杂WO3光电极的起始电位负移。X射线 光电子能谱价带谱(XPS-VB)和紫外-可见吸收(UV-Vis)光谱显示,Ti 掺杂WO3光阳极的能带位置向上移 动,导致了起始电位的负移。此外,电化学阻抗谱测试(EIS)表明,Ti 掺杂WO3光阳极的导电性显著增 强,引起光生载流子的快速分离。研究成果有望提供一种高效、低成本光阳极的设计路线。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. ZHOU Min, XU Yang, LEI Yong. Heterogeneous nanostructure array for electrochemical energy conversion and storage [J]. Nano Today, 2018, 20: 33–57. DOI: https://doi.org/10.1016/j.nantod.2018.04.002.

    Article  Google Scholar 

  2. WANG Ya-bin, MA Hui, GUO Jing-jing, et al. TiO2−x nanoparticles dispersed in center-radial channels of dendritic mesoporous silica nanospheres (DMSNs) as novelly structured photocatalysts [J]. Journal of Materials Science, 2021, 56(26): 14659–14671. DOI: https://doi.org/10.1007/s10853-021-06049-z.

    Article  Google Scholar 

  3. MONTOYA J H, SEITZ L C, CHAKTHRANONT P, et al. Materials for solar fuels and chemicals [J]. Nature Materials, 2017, 16(1): 70–81. DOI: https://doi.org/10.1038/nmat4778.

    Article  Google Scholar 

  4. JIANG Chao-ran, MONIZ S J A, WANG Ai-qin, et al. Photoelectrochemical devices for solar water splitting-materials and challenges [J]. Chemical Society Reviews, 2017, 46(15): 4645–4660. DOI: https://doi.org/10.1039/c6cs00306k.

    Article  Google Scholar 

  5. QIU Yong-cai, PAN Zheng-hui, CHEN Hai-ning, et al. Current progress in developing metal oxide nanoarrays-based photoanodes for photoelectrochemical water splitting [J]. Science Bulletin, 2019, 64(18): 1348–1380. DOI: https://doi.org/10.1016/j.scib.2019.07.017.

    Article  Google Scholar 

  6. FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5385): 37–38. https://doi.org/10.1038/238037a0.

    Article  Google Scholar 

  7. CAO Da-peng, LUO Wen-jun, FENG Jian-yong, et al. Cathodic shift of onset potential for water oxidation on a Ti4+ doped Fe2O3 photoanode by suppressing the back reaction [J]. Energy Environ Sci, 2014, 7(2): 752–759. DOI: https://doi.org/10.1039/c3ee42722f.

    Article  Google Scholar 

  8. KLAHR B, GIMENEZ S, FABREGAT-SANTIAGO F, et al. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with “Co-Pi”-coated hematite electrodes [J]. Journal of the American Chemical Society, 2012, 134(40): 16693–16700. DOI: https://doi.org/10.1021/ja306427f.

    Article  Google Scholar 

  9. MAZZARO R, BOSCOLO B S, NATALI M, et al. Hematite nanostructures: An old material for a new story. Simultaneous photoelectrochemical oxidation of benzylamine and hydrogen production through Ti doping [J]. Nano Energy, 2019, 61: 36–46. DOI: https://doi.org/10.1016/j.nanoen.2019.04.013.

    Article  Google Scholar 

  10. CHEN Dong, LIU Zhi-feng, ZHANG Shao-ce. Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method [J]. Applied Catalysis B: Environmental, 2020, 265: 118580. DOI: https://doi.org/10.1016/j.apcatb.2019.118580.

    Article  Google Scholar 

  11. ZHONG D K, CHOI S, GAMELIN D R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W: BiVO4 [J]. Journal of the American Chemical Society, 2011, 133(45): 18370–18377. DOI: https://doi.org/10.1021/ja207348x.

    Article  Google Scholar 

  12. KIM T W, CHOI K S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting [J]. Science, 2014, 343(6174): 990–994. DOI: https://doi.org/10.1126/science.1246913.

    Article  Google Scholar 

  13. SELIM S, PASTOR E, GARCÍA-TECEDOR M, et al. Impact of oxygen vacancy occupancy on charge carrier dynamics in BiVO4 photoanodes [J]. Journal of the American Chemical Society, 2019, 141(47): 18791–18798. DOI: https://doi.org/10.1021/jacs.9b09056.

    Article  Google Scholar 

  14. LIU Jia-li, YANG Qiang, LIU Ji-kai, et al. Enhanced photoelectrochemical water oxidation of WO3/R-CoO and WO3/B-CoO photoanodes with a type II heterojunction [J]. Journal of Materials Science, 2021, 56(13): 8079–8090. DOI: https://doi.org/10.1007/s10853-020-05754-5.

    Article  Google Scholar 

  15. WANG Yi-dan, TIAN Wei, CHEN Cheng, et al. Tungsten trioxide nanostructures for photoelectrochemical water splitting: Material engineering and charge carrier dynamic manipulation [J]. Advanced Functional Materials, 2019, 29(23): 1809036. DOI: https://doi.org/10.1002/adfm.201809036.

    Article  Google Scholar 

  16. ZHANG Peng, WANG Tuo, GONG Jin-long. Passivation of surface states by ALD-grown TiO2 overlayers on Ta3N5 anodes for photoelectrochemical water oxidation [J]. Chemical Communications (Cambridge, England), 2016, 52(57): 8806–8809. DOI: https://doi.org/10.1039/c6cc03411j.

    Article  Google Scholar 

  17. NARKEVICIUTE I, CHAKTHRANONT P, MACKUS A J M, et al. Tandem core-shell Si-Ta3N5 photoanodes for photoelectrochemical water splitting [J]. Nano Letters, 2016, 16(12): 7565–7572. DOI: https://doi.org/10.1021/acs.nanolett.6b03408.

    Article  Google Scholar 

  18. SAHARA G, KUMAGAI H, MAEDA K, et al. Photoelectrochemical reduction of CO2 coupled to water oxidation using a photocathode with a Ru(II)-Re(I) complex photocatalyst and a CoOx/TaON photoanode [J]. Journal of the American Chemical Society, 2016, 138(42): 14152–14158. DOI: https://doi.org/10.1021/jacs.6b09212.

    Article  Google Scholar 

  19. ZHAN Fa-qi, WANG Ke-ke, YANG Xue-tao, et al. Epitaxial growth of Heteropolyacid-WO3 vertical heterostructures with photo-induced charge modulation for enhanced water oxidation [J]. Electrochimica Acta, 2019, 306: 96–105. DOI: https://doi.org/10.1016/j.electacta.2019.03.113.

    Article  Google Scholar 

  20. ZHANG Tao, WANG Lu, SU Jin-zhan, et al. Branched tungsten oxide nanorod arrays synthesized by controlled phase transformation for solar water oxidation [J]. Chem Cat Chem, 2016, 8(12): 2119–2127. DOI: https://doi.org/10.1002/cctc.201600267.

    Google Scholar 

  21. HILL J C, CHOI K S. Effect of electrolytes on the selectivity and stability of n-type WO3 photoelectrodes for use in solar water oxidation [J]. The Journal of Physical Chemistry C, 2012, 116(14): 7612–7620. DOI: https://doi.org/10.1021/jp209909b.

    Article  Google Scholar 

  22. JIAO Zhi-hui, WANG Jin-min, KE Lin, et al. Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties [J]. ACS Applied Materials & Interfaces, 2011, 3(2): 229–236. DOI: https://doi.org/10.1021/am100875z.

    Article  Google Scholar 

  23. ZHANG Ning, LI Xi-yu, YE Hua-cheng, et al. Oxide defect engineering enables to couple solar energy into oxygen activation [J]. Journal of the American Chemical Society, 2016, 138(28): 8928–8935. DOI: https://doi.org/10.1021/jacs.6b04629.

    Article  Google Scholar 

  24. HAO Zhi-chao, GUO Zhen-gang, RUAN Meng-nan, et al. Multifunctional WO3/NiCo2O4 heterojunction with extensively exposed bimetallic Ni/Co redox reaction sites for efficient photoelectrochemical water splitting [J]. Chem Cat Chem, 2021, 13(1): 271–280. DOI: https://doi.org/10.1002/cctc.202001298.

    Google Scholar 

  25. MA Ming, ZHANG Kan, LI Ping, et al. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation [J]. Angewandte Chemie International Edition, 2016, 55(39): 11819–11823. DOI: https://doi.org/10.1002/anie.201605247.

    Article  Google Scholar 

  26. LIU Ya, ZHAO Liang, SU Jin-zhan, et al. Fabrication and properties of a branched (NH4)xWO3 nanowire array film and a porous WO3 nanorod array film [J]. ACS Applied Materials & Interfaces, 2015, 7(6): 3532–3538. DOI: https://doi.org/10.1021/am507230t.

    Article  Google Scholar 

  27. JADWISZCZAK M, JAKUBOW-PIOTROWSKA K, KEDZIERZAWSKI P, et al. Highly efficient sunlight-driven seawater splitting in a photoelectrochemical cell with chlorine evolved at nanostructured WO3 photoanode and hydrogen stored as hydride within metallic cathode [J]. Advanced Energy Materials, 2020, 10(3): 1903213. DOI: https://doi.org/10.1002/aenm.201903213.

    Article  Google Scholar 

  28. FAN Xiao-li, GAO Bin, WANG Tao, et al. Layered double hydroxide modified WO3 nanorod arrays for enhanced photoelectrochemical water splitting [J]. Applied Catalysis A: General, 2016, 528: 52–58. DOI: https://doi.org/10.1016/j.apcata.2016.09.014.

    Article  Google Scholar 

  29. CAO Xiao-hu, XU Chun-jiang, MA Jia-rui, et al. Enhanced photoelectrochemical performance of \({\rm{WO}}_3^ - \) based composite photoanode coupled with carbon quantum dots and NiFe layered double hydroxide [J]. Chem Sus Chem, 2019, 12(20): 4685–4692. DOI: https://doi.org/10.1002/cssc.201901803.

    Article  Google Scholar 

  30. ZHANG Lu, YANG Meng-fan, LUO Zhi-shan, et al. Photodeposited CoOx as highly active phases to boost water oxidation on BiVO4/WO3 photoanode [J]. International Journal of Hydrogen Energy, 2019, 44(47): 25652–25661. DOI: https://doi.org/10.1016/j.ijhydene.2019.08.040.

    Article  Google Scholar 

  31. BAI Shou-li, YANG Xiao-jun, LIU Cheng-yao, et al. An integrating photoanode of WO3/Fe2O3 heterojunction decorated with NiFe-LDH to improve PEC water splitting efficiency [J]. ACS Sustainable Chemistry & Engineering, 2018, 6(10): 12906–12913. DOI: https://doi.org/10.1021/acssuschemeng.8b02267.

    Article  Google Scholar 

  32. RETTIE A J E, KLAVETTER K C, LIN J F, et al. Improved visible light harvesting of WO3 by incorporation of sulfur or iodine: A tale of two impurities [J]. Chemistry of Materials, 2014, 26(4): 1670–1677. DOI: https://doi.org/10.1021/cm403969r.

    Article  Google Scholar 

  33. LIU Yang, LI Jie, LI Wen-zhang, et al. Enhancement of the photoelectrochemical performance of WO3 vertical arrays film for solar water splitting by gadolinium doping [J]. The Journal of Physical Chemistry C, 2015, 119(27): 14834–14842. DOI: https://doi.org/10.1021/acs.jpcc.5b00966.

    Article  Google Scholar 

  34. WANG Xiao-guang, SUN Ming-hui, MURUGANANTHAN M, et al. Electrochemically self-doped WO3/TiO2 nanotubes for photocatalytic degradation of volatile organic compounds [J]. Applied Catalysis B: Environmental, 2020, 260: 118205. DOI: https://doi.org/10.1016/j.apcatb.2019.118205.

    Article  Google Scholar 

  35. SHIN S, HAN H S, KIM J S, et al. A tree-like nanoporous WO3 photoanode with enhanced charge transport efficiency for photoelectrochemical water oxidation [J]. Journal of Materials Chemistry A, 2015, 3(24): 12920–12926. DOI: https://doi.org/10.1039/c5ta00823a.

    Article  Google Scholar 

  36. NAYAK A K, SOHN Y, PRADHAN D. Facile green synthesis of WO3·H2O nanoplates and WO3 nanowires with enhanced photoelectrochemical performance [J]. Crystal Growth & Design, 2017, 17(9): 4949–4957. DOI: https://doi.org/10.1021/acs.cgd.7b00886.

    Article  Google Scholar 

  37. KALANUR S S, YOO I H, CHO I S, et al. Niobium incorporated WO3 nanotriangles: Band edge insights and improved photoelectrochemical water splitting activity [J]. Ceramics International, 2019, 45(7): 8157–8165. DOI: https://doi.org/10.1016/j.ceramint.2019.01.117.

    Article  Google Scholar 

  38. ZHANG Teng, ZHU Zong-long, CHEN Hai-ning, et al. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: A combined experimental and theoretical study [J]. Nanoscale, 2015, 7(7): 2933–2940. DOI: https://doi.org/10.1039/c4nr07024k.

    Article  Google Scholar 

  39. KALANUR S S, YOO I H, EOM K, et al. Enhancement of photoelectrochemical water splitting response of WO3 by Means of Bi doping [J]. Journal of Catalysis, 2018, 357: 127–137. DOI: https://doi.org/10.1016/j.jcat.2017.11.012.

    Article  Google Scholar 

  40. KAKO T, MENG Xian-guang, YE Jin-hua. Enhancement of photocatalytic activity for WO3 by simple NaOH loading [J]. Applied Catalysis A: General, 2014, 488: 183–188. DOI: https://doi.org/10.1016/j.apcata.2014.09.046.

    Article  Google Scholar 

  41. WANG Feng-gong, di VALENTIN C, PACCHIONI G. Doping of WO3 for photocatalytic water splitting: Hints from density functional theory [J]. The Journal of Physical Chemistry C, 2012, 116(16): 8901–8909. DOI: https://doi.org/10.1021/jp300867j.

    Article  Google Scholar 

  42. ZHANG Xue-liang, WANG Xin, WANG De-fa, et al. Conformal BiVO4-layer/WO3-nanoplate-array heterojunction photoanode modified with cobalt phosphate cocatalyst for significantly enhanced photoelectrochemical performances [J]. ACS Applied Materials & Interfaces, 2019, 11(6): 5623–5631. DOI: https://doi.org/10.1021/acsami.8b05477.

    Article  Google Scholar 

  43. SU Jin-zhan, FENG Xin-jian, SLOPPY J D, et al. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties [J]. Nano Letters, 2011, 11(1): 203–208. DOI: https://doi.org/10.1021/nl1034573.

    Article  Google Scholar 

  44. YANG Jiao, LI Wen-zhang, LI Jie, et al. Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates [J]. Journal of Materials Chemistry, 2012, 22(34): 17744. DOI: https://doi.org/10.1039/c2jm33199c.

    Article  Google Scholar 

  45. GAO Hong-qing, ZHANG Peng, HU Jun-hua, et al. One-dimensional Z-scheme TiO2/WO3/Pt heterostructures for enhanced hydrogen generation [J]. Applied Surface Science, 2017, 391: 211–217. DOI: https://doi.org/10.1016/j.apsusc.2016.06.170.

    Article  Google Scholar 

  46. ZHAO Jiang-tao, ZHANG Peng, FAN Jia-jie, et al. Constructing 2D layered MoS2 nanosheets-modified Z-scheme TiO2/WO3 nanofibers ternary nanojunction with enhanced photocatalytic activity [J]. Applied Surface Science, 2018, 430: 466–474. DOI: https://doi.org/10.1016/j.apsusc.2017.06.308.

    Article  Google Scholar 

  47. UPADHYAY S B, MISHRA R K, SAHAY P P. Structural and alcohol response characteristics of Sn-doped WO3 nanosheets [J]. Sensors and Actuators B: Chemical, 2014, 193: 19–27. DOI: https://doi.org/10.1016/j.snb.2013.11.049.

    Article  Google Scholar 

  48. FENG Cheng-xin, WANG Shao-zhen, GENG Bao-you. Ti(IV) doped WO3 nanocuboids: Fabrication and enhanced visible-light-driven photocatalytic performance [J]. Nanoscale, 2011, 3(9): 3695–3699. DOI: https://doi.org/10.1039/c1nr10460h.

    Article  Google Scholar 

  49. YEH T F, TENG C Y, CHEN S J, et al. Nitrogen-doped graphene oxide quantum dots as photocatalysts for overall water-splitting under visible light illumination [J]. Advanced Materials, 2014, 26(20): 3297–3303. DOI: https://doi.org/10.1002/adma.201305299.

    Article  Google Scholar 

  50. SHEN Shao-hua, ZHOU Ji-gang, DONG Chung-li, et al. Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting [J]. Scientific Reports, 2014, 4: 6627. DOI: https://doi.org/10.1038/srep06627.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TANG Ya-qin conducted partial experiments, performed data analysis and edited the draft of the manuscript. JIANG Di, WANG Huan, ZHENG Hong-ye, REN Lu-jun conducted partial experiments. ZHANG Xue-liang provided the concept, conducted partial experiments and wrote the first draft of the manuscript. WEI Kui-xian, MA Wen-hui, LUO Da-jun and LIU Yi-ke performed data analysis and conducted the literature review.

Corresponding authors

Correspondence to Xue-liang Zhang  (张学亮) or Yi-ke Liu  (刘仪柯).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationship that could have appeared to influence the work reported in this paper.

Foundation item: Project(Qian Jiao He KY Zi [2021]257) supported provided by the Natural Science Research Project of Education Department of Guizhou Province, China; Project(GZSQCC2019003) supported by the High-level Innovative Talent Cultivation Project of Guizhou Province, China; Projects(GZLGXM-01, GZLGXM-08) supported by the Academic New Seedling Cultivation and Innovation Exploration Project of Guizhou Institute of Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Yq., Jiang, D., Wang, H. et al. Band gap modulation of nanostructured WO3 nanoplate film by Ti doping for enhanced photoelectrochemical performance. J. Cent. South Univ. 29, 2968–2979 (2022). https://doi.org/10.1007/s11771-022-5125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5125-3

Key words

关键词

Navigation