Skip to main content
Log in

Country-level meteorological parameters for building energy efficiency in China

中国建筑节能气象参数研究

  • Building Thermal Environment and Energy Conservation
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Accurate basic data are necessary to support performance-based design for achieving carbon peak and carbon neutral targets in the building sector. Meteorological parameters are the prerequisites of building thermal engineering design, heating ventilation and air conditioning design, and energy consumption simulations. Focusing on the key issues such as low spatial coverage and the lack of daily or higher time resolution data, daily and hourly models of the surface meteorological data and solar radiation were established and evaluated. Surface meteorological data and solar radiation data were generated for 1019 cities and towns in China from 1988 to 2017. The data were carefully compared, and the accuracy was proved to be high. All the meteorological parameters can be assessed in the building sector via a sharing platform. Then, country-level meteorological parameters were developed for energy-efficient building assessment in China, based on actual meteorological data in the present study. This set of meteorological parameters may facilitate engineering applications as well as allowing the updating and expansion of relevant building energy efficiency standards. The study was supported by the National Science and Technology Major Project of China during the 13th Five-Year Plan Period, named Fundamental parameters on building energy efficiency in China, comprising of 15 top-ranking universities and institutions in China.

摘要

合理、可靠的室外气象参数是建筑行业实现碳达峰、碳中和目标的必要条件之一,也是建筑热 工设计、暖通空调设计与建筑节能设计不可或缺的基准和前提。本研究针对基础数据“更新不及时”、 “精细化程度不高”和“新需求不能满足”等问题,着重解决统计年限更新、覆盖城镇扩充等问题, 建立支撑我国建筑节能设计的基础气象参数体系。基于中国1988─2017 年1019 个城镇的地面基本气 象要素和太阳辐射要素原始数据,研究建立了地面气象要素、太阳辐射的逐日、逐时计算模型,获得 了逐月、逐日、逐时等不同精度的多层次建筑节能设计基础气象数据集,面向中国建筑节能设计相关 标准规范的更新需求,研究建立了国家级的建筑节能设计用气象参数数据库,开发了建筑节能设计基 础数据共享平台。研究成果推动中国建筑节能基础数据体系的发展与完善,服务于国家重大战略的工 程建设需求,促进了中国建筑节能设计效率与水平的提升。本研究得到了“十三五”国家重点研发计 划项目“建筑节能设计基础参数研究”的资助,研究团队由中国在该领域处于领先地位的15 家高校与 科研机构组成。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHAI Z, PREVITALI J M. Ancient vernacular architecture: Characteristics categorization and energy performance evaluation [J]. Energy and Buildings, 2010, 42(3): 357–365. DOI: https://doi.org/10.1016/j.enbuild.2009.10.002.

    Article  Google Scholar 

  2. YANG Liu, LAM J C, TSANG C L. Energy performance of building envelopes in different climate zones in China [J]. Applied Energy, 2008, 85(9): 800–817. DOI: https://doi.org/10.1016/j.apenergy.2007.11.002.

    Article  Google Scholar 

  3. CHI Fang-ai, XU Li-ming, PAN Jia-jie, et al. Prediction of the total day-round thermal load for residential buildings at various scales based on weather forecast data [J]. Applied Energy, 2020, 280: 116002. DOI: https://doi.org/10.1016/j.apenergy.2020.116002.

    Article  Google Scholar 

  4. WAN K K W, LI D H W, YANG Liu, et al. Climate classifications and building energy use implications in China [J]. Energy and Buildings, 2010, 42(9): 1463–1471. DOI: https://doi.org/10.1016/j.enbuild.2010.03.016.

    Article  MathSciNet  Google Scholar 

  5. LIANG Jing, LI Bai-zhan, WU Yong, et al. An investigation of the existing situation and trends in building energy efficiency management in China [J]. Energy and Buildings, 2007, 39(10): 1098–1106. DOI: https://doi.org/10.1016/j.enbuild.2006.12.002.

    Article  Google Scholar 

  6. HONG Tian-zhen. A close look at the China design standard for energy efficiency of public buildings [J]. Energy and Buildings, 2009, 41(4): 426–435. DOI: https://doi.org/10.1016/j.enbuild.2008.11.003.

    Article  Google Scholar 

  7. LAM J C, TSANG C L, YANG L, et al. Weather data analysis and design implications for different climatic zones in China [J]. Building and Environment, 2005, 40(2): 277–296. DOI: https://doi.org/10.1016/j.buildenv.2004.07.005.

    Article  Google Scholar 

  8. HONG Tian-zhen, CHOU S K, BONG T Y. A design day for building load and energy estimation [J]. Building and Environment, 1999, 34(4): 469–477. DOI: https://doi.org/10.1016/S0360-1323(98)00035-3.

    Article  Google Scholar 

  9. CAO Jing-fu, LI Ming-cai, WANG Min, et al. Effects of climate change on outdoor meteorological parameters for building energy-saving design in the different climate zones of China [J]. Energy and Buildings, 2017, 146: 65–72. DOI: https://doi.org/10.1016/j.enbuild.2017.04.045.

    Article  Google Scholar 

  10. XU Xin, TIAN Zhe, LIU Kui-xing, et al. The optimal period of record for air-conditioning outdoor design conditions [J]. Energy and Buildings, 2014, 72: 322–328. DOI: https://doi.org/10.1016/j.enbuild.2013.12.002.

    Article  Google Scholar 

  11. GE Feng-hua, GUO Xing-long, LIU Hong-kai, et al. Energy performance of air cooling systems considering indoor temperature and relative humidity in different climate zones in China [J]. Energy and Buildings, 2013, 64: 145–153. DOI: https://doi.org/10.1016/j.enbuild.2013.04.007.

    Article  Google Scholar 

  12. WAN J W, YANG Kun-li, ZHANG W J, et al. A new method of determination of indoor temperature and relative humidity with consideration of human thermal comfort [J]. Building and Environment, 2009, 44(2): 411–417. DOI: https://doi.org/10.1016/j.buildenv.2008.04.001.

    Article  Google Scholar 

  13. LI D H W, LAM J C. Development of solar heat gain factors database using meteorological data [J]. Building and Environment, 2001, 36(4): 469–483. DOI: https://doi.org/10.1016/S0360-1323(00)00030-5.

    Article  Google Scholar 

  14. PEDERSEN L. Use of different methodologies for thermal load and energy estimations in buildings including meteorological and sociological input parameters [J]. Renewable and Sustainable Energy Reviews, 2007, 11(5): 998–1007. DOI: https://doi.org/10.1016/j.rser.2005.08.005.

    Article  Google Scholar 

  15. GUI Chen-xi, DA Yan, HONG Tian-zhen, et al. Vertical meteorological patterns and their impact on the energy demand of tall buildings [J]. Energy and Buildings, 2021, 232: 110624. DOI: https://doi.org/10.1016/j.enbuild.2020.110624.

    Article  Google Scholar 

  16. GUGLIERMETTI F, BISEGNA F. Meteorological days for HVAC system design in Mediterranean climate [J]. Building and Environment, 2003, 38(8): 1063–1074. DOI: https://doi.org/10.1016/S0360-1323(03)00058-1.

    Article  Google Scholar 

  17. FARAH S, SAMAN W, BOLAND J. Development of robust meteorological year weather data [J]. Renewable Energy, 2018, 118: 343–350. DOI: https://doi.org/10.1016/j.renene.2017.11.033.

    Article  Google Scholar 

  18. DAVID M, ADELARD L, LAURET P, et al. A method to generate Typical Meteorological Years from raw hourly climatic databases [J]. Building and Environment, 2010, 45(7): 1722–1732. DOI: https://doi.org/10.1016/j.buildenv.2010.01.025.

    Article  Google Scholar 

  19. Refrigerating. 2017 ASHRAE handbook—Fundamentals [M]. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engine, 2017.

  20. CIBSE. CIBSE Guide A: Environmental design [M]. London: The Chartered Institution of Building Services Engineers, 2015.

    Google Scholar 

  21. GB 50176 — 2016. Code for thermal design of civil building [S]. (in Chinese)

  22. GB 50736 - 2012. Design code for heating ventilation and air conditioning of civil buildings [S]. (in Chinese)

  23. JGJ/T 346 - 2014. Standard for weather data of building energy efficiency[S]. (in Chinese)

  24. GB 50189-2015. Design standard for energy efficiency of public buildings[S]. (in Chinese)

  25. JGJ 26 - 2018. Design standard for energy efficiency of residential buildings in severe cold and cold zones [S]. (in Chinese)

  26. JGJ 475 - 2019. Standard for design of energy efficiency of residential buildings in moderate climate zone[S]. (in Chinese)

  27. JGJ 75 - 2012. Design standard for energy efficiency of residential buildings in hot summer and warm winter zone [S]. (in Chinese)

  28. JGJ 134 - 2010. Design standard for energy efficiency of residential buildings in hot summer and cold winter zone[S]. (in Chinese)

  29. WAN K K W, CHEUNG K L, YANG Liu, et al. A new variable for climate change study and implications for the built environment [J]. Renewable Energy, 2009, 34(3): 916–919. DOI: https://doi.org/10.1016/j.renene.2008.05.033.

    Article  Google Scholar 

  30. WANG Shang-yu, LIU Yan, CAO Qi-meng, et al. Applicability of passive design strategies in China promoted under global warming in past half century [J]. Building and Environment, 2021, 195: 107777. DOI: https://doi.org/10.1016/j.buildenv.2021.107777.

    Article  Google Scholar 

  31. LIU Yan, LI Qi, YANG Liu, et al. Urban heat island effects of various urban morphologies under regional climate conditions [J]. Science of the Total Environment, 2020, 743: 140589. DOI: https://doi.org/10.1016/j.scitotenv.2020.140589.

    Article  Google Scholar 

  32. WANG Yu-ying, BAI Yan, YANG Liu, et al. Short time air temperature prediction using pattern approximate matching [J]. Energy and Buildings, 2021, 244: 111036. DOI: https://doi.org/10.1016/j.enbuild.2021.111036.

    Article  Google Scholar 

  33. CAO Qi-meng, LIU Yan, LYU Kai-lin, et al. Solar radiation zoning and daily global radiation models for regions with only surface meteorological measurements in China [J]. Energy Conversion and Management, 2020, 225: 113447. DOI: https://doi.org/10.1016/j.enconman.2020.113447.

    Article  Google Scholar 

  34. YANG Liu, CAO Qi-meng, YU Ying, et al. Comparison of daily diffuse radiation models in regions of China without solar radiation measurement [J]. Energy, 2020, 191: 116571. DOI: https://doi.org/10.1016/j.energy.2019.116571.

    Article  Google Scholar 

  35. HUI S C M, CHEUNG K P. Climatic data for building energy design in Hong Kong and Mainland China [C]//Proc of the CIBSE National Conference. 1997.

  36. HERRERA M, NATARAJAN S, COLEY D A, et al. A review of current and future weather data for building simulation [J]. Building Services Engineering Research and Technology, 2017, 38(5): 602–627. DOI: https://doi.org/10.1177/0143624417705937.

    Article  Google Scholar 

  37. GUO Si-yue, DA Yan, HONG Tian-zhen, et al. A novel approach for selecting typical hot-year (THY) weather data [J]. Applied Energy, 2019, 242: 1634–1648. DOI: https://doi.org/10.1016/j.apenergy.2019.03.065.

    Article  Google Scholar 

  38. HAN Wen-xuan, TIAN Zhe, WANG Yuan-yuan, et al. Evaluation on determination method of current climate design conditions in China based on indoor thermal environment risk level [J]. Energy, 2018, 161: 610–617. DOI: https://doi.org/10.1016/j.energy.2018.07.102.

    Article  Google Scholar 

  39. LAM J C, WAN K K W, LAU C C S, et al. Climatic influences on solar modelling in China [J]. Renewable Energy, 2008, 33(7): 1591–1604. DOI: https://doi.org/10.1016/j.renene.2007.09.010.

    Article  Google Scholar 

  40. YAO Wan-xiang, LI Zheng-rong, XIU Tong-bin, et al. New decomposition models to estimate hourly global solar radiation from the daily value [J]. Solar Energy, 2015, 120: 87–99. DOI: https://doi.org/10.1016/j.solener.2015.05.038.

    Article  Google Scholar 

  41. YANG Liu, LAM J C, LIU Jia-ping. Analysis of typical meteorological years in different climates of China [J]. Energy Conversion and Management, 2007, 48(2): 654–668. DOI: https://doi.org/10.1016/j.enconman.2006.05.016.

    Article  Google Scholar 

  42. FINKELSTEIN J M, SCHAFER R E. Improved goodness-of-fit tests [J]. Biometrika, 1971, 58(3): 641–645. DOI: https://doi.org/10.1093/biomet/58.3.641.

    Article  Google Scholar 

  43. HALL I J. Generation of typical meteorological years for 26 Solmet stations [C]//Proceedings of the 1978 annual meeting of the American Section of the International Solar Energy Society, 1978.

  44. WILLIAM M, URBAN K. User’s manual for TMY2s [M]. Golden, CO, USA: National Renewable Energy Laboratory, 1996.

    Google Scholar 

  45. CONOVER W J. Practical nonparametric statistics [M]. New York: John Wiley & Sons. 1999.

    Google Scholar 

  46. TANG G. Progress of DEM and digital terrain analysis in China [J]. Acta Geographica Sinica, 2014, 69: 1305–1325.

    Google Scholar 

  47. GU Wen-ya, ZHU Xiao-chen, MENG Xiang-rui, et al. Research on the influence of small-scale terrain on precipitation [J]. Water, 2021, 13(6): 805. DOI: https://doi.org/10.3390/w13060805.

    Article  Google Scholar 

  48. LAM J C. Energy analysis of commercial buildings in subtropical climates [J]. Building and Environment, 2000, 35(1): 19–26. DOI: https://doi.org/10.1016/S0360-1323(98)00067-5.

    Article  Google Scholar 

  49. MILNE M, GIVONI B. Architectural design based on climate [M]//WATSON D. Energy conservation through building Design. McGraw Hill Book Company, 1975: 96–113.

Download references

Author information

Authors and Affiliations

Authors

Contributions

LIU Yan conducted project administration, the literature review and prepared the draft of the manuscript. WANG Shang-yu, LU Mei and CAO Qi-meng analyzed the measured data and assisted in original draft preparation. YANG Liu supervised the research. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Liu Yang  (杨柳).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Project(2018YFC0704500) supported by the National Science and Technology Major Project of China during the 13th Five-Year Plan Period

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Wang, Sy., Cao, Qm. et al. Country-level meteorological parameters for building energy efficiency in China. J. Cent. South Univ. 29, 2301–2316 (2022). https://doi.org/10.1007/s11771-022-5108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5108-4

Key words

关键词

Navigation