Skip to main content
Log in

Comparative investigations of pressure waves induced by trains passing through a tunnel with different speed modes

不同速度模式下列车通过隧道引起的压力波的比较研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Pressure waves induced by high-speed trains passing through a tunnel have adverse effects on train structures and passenger comfort. These adverse effects can be alleviated when the train passing through the tunnel with a speed mode of deceleration. Thus, to investigate the effect of speed modes on pressure waves, three-dimensional compressible unsteady Reynolds-averaged Navier —Stokes simulations and the sliding mesh are used to simulate pressure waves on train surfaces and tunnel walls when trains passing through a tunnel with three different speed modes (a constant speed at 350 km/h, a uniform deceleration from 350 to 300 km/h, and another uniform deceleration from 350 to 250 km/h). Compared with the constant speed, the peak-to-peak of the train surface pressure under the other two speed modes reaches a maximum difference of 11.0%. The maximum positive pressure difference of the tunnel wall under different speed modes is caused by the different attenuation of the friction effect when the train enters the tunnel, and the maximum difference is 12.8%. The difference of the maximum negative pressure on the tunnel wall is caused by the different speed and pressure wave intensity of the train arriving at the same measuring point in different speed modes, and the maximum difference is 15.8%. Hence, it can be concluded that a speed mode of deceleration for trains passing a tunnel can effectively alleviate the aerodynamic effect in the tunnel, especially for the pressure on the tunnel wall.

摘要

高速列车通过隧道所产生的压力波动对列车结构和司乘人员的人耳舒适性会产生不利影响, 而列车以减速模式通过隧道可缓解此种不利影响。 因此, 为研究不同速度模式对列车通过隧道引起的压力波的影响, 本文采用三维可压缩非定常雷诺时均模型, 利用滑移网格方法对三种不同速度模式(350 km/h 匀速, 350 km/h∼300 km/h 匀减速, 以及350 km/h∼250 km/h 匀减速)下列车通过隧道时列车表面和隧道壁面压力波进行数值模拟研究。 研究结果表明, 不同速度模式导致列车尾部进入隧道时的速度不同, 最终产生的膨胀波和反射的压缩波强度也不同。 与匀速模式相比, 两种匀减速模式中列车表面压力峰峰值差异最大为11.0%。 不同速度模式下隧道壁面的最大正压差异是列车进入隧道过程中摩擦效应的衰减不同造成的, 最大差异为12.8%。 隧道壁面最大负压的差异是由于不同速度模式下列车到达同一测点速度和压力波强度不同造成, 最大差异为15.8%。 由此可见, 高速列车通过隧道过程中采用减速模式可以有效缓解隧道内的气动效应, 对隧道壁面压力的缓解作用大于对列车表面压力的缓解作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AOKI T, VARDY A E, BROWN J M B. Passive alleviation of micro-pressure waves from tunnel portals [J]. Journal of Sound and Vibration, 1999, 220(5): 921–940. DOI: https://doi.org/10.1006/jsvi.1998.2006.

    Article  Google Scholar 

  2. BARON A, MOLTENI P, VIGEVANO L. High-speed trains: Prediction of micro-pressure wave radiation from tunnel portals [J]. Journal of Sound and Vibration, 2006, 296(1 -2): 59–72. DOI: https://doi.org/10.1016/j.jsv.2006.01.067.

    Article  Google Scholar 

  3. CHEN Xiao-dong, LIU Tang-hong, XIA Yu-tao, et al. The evolution of airtight performance for a high-speed train during its long-term service [J]. Measurement, 2021, 177: 109319. DOI: https://doi.org/10.1016/j.measurement.2021.109319.

    Article  Google Scholar 

  4. JI Peng, WANG Tian-tian, WU Fan. Calculation grid and turbulence model for numerical simulating pressure fluctuations in a high-speed train tunnel [J]. Journal of Central South University, 2019, 26(10): 2870–2877. DOI: https://doi.org/10.1007/s11771-019-4220-6.

    Article  Google Scholar 

  5. LI Wen-hui, LIU Tang-hong, MARTINEZ-VAZQUEZ P, et al. Influence of blockage ratio on slipstreams in a highspeed railway tunnel [J]. Tunnelling and Underground Space Technology, 2021, 115: 104055. DOI: https://doi.org/10.1016/j.tust.2021.104055.

    Article  Google Scholar 

  6. LIU Tang-hong, GENG Shen-gen, CHEN Xiao-dong, et al. Numerical analysis on the dynamic airtightness of a railway vehicle passing through tunnels [J]. Tunnelling and Underground Space Technology, 2020, 97: 103286. DOI: https://doi.org/10.1016/j.tust.2020.103286.

    Article  Google Scholar 

  7. MOHAMMADI A, AMADOR-JIMENEZ L, NASIRI F. A multi-criteria assessment of the passengers’ level of comfort in urban railway rolling stock [J]. Sustainable Cities and Society, 2020, 53: 101892. DOI: https://doi.org/10.1016/j.scs.2019.101892.

    Article  Google Scholar 

  8. XIA Yu-tao, CHEN Xiao-dong, LIU Tang-hong, et al. A study on the airtightness of a high-speed train using a reduced-scale method [J]. Measurement, 2022, 188: 110610. DOI: https://doi.org/10.1016/j.measurement.2021.110610.

    Article  Google Scholar 

  9. HU Song-tao, MU Yuan-peng, LIU Guo-dan, et al. Research on effecting mechanism of environmental parameters on human ear [J]. Building and Environment, 2017, 118: 289–299. DOI: https://doi.org/10.1016/j.buildenv.2017.03.039.

    Article  Google Scholar 

  10. MCCLELLAND I L, GAWTHORPE R G. The response of railway passengers to pressure fluctuations [J]. Applied Ergonomics, 1986, 17(4): 305–315. DOI: https://doi.org/10.1016/0003-6870(86)90134-1.

    Article  Google Scholar 

  11. SANOK S, MENDOLIA F, WITTKOWSKI M, et al. Passenger comfort on high-speed trains: Effect of tunnel noise on the subjective assessment of pressure variations [J]. Ergonomics, 2015, 58(6): 1022–1031. DOI: https://doi.org/10.1080/00140139.2014.997805.

    Article  Google Scholar 

  12. ANTHOINE J. Alleviation of pressure rise from a high-speed train entering a tunnel [J]. AIAA Journal, 2009, 47(9): 2132–2142. DOI: https://doi.org/10.2514/1.41109.

    Article  Google Scholar 

  13. BELLENOUE M, MORINIÈRE V, KAGEYAMA T. Experimental 3-d simulation of the compression wave, due to train-tunnel entry [J]. Journal of Fluids and Structures, 2002, 16(5): 581–595. DOI: https://doi.org/10.1006/jfls.2002.0444.

    Article  Google Scholar 

  14. WANG Tian-tian, LEE Chun-hian, YANG Ming-zhi. Influence of enlarged section parameters on pressure transients of high-speed train passing through a tunnel [J]. Journal of Central South University, 2018, 25(11): 2831–2840. DOI: https://doi.org/10.1007/s11771-018-3956-8.

    Article  Google Scholar 

  15. LI Wen-hui, LIU Tang-hong, MARTINEZ-VAZQUEZ P, et al. Effects of embankment layouts on train aerodynamics in a wind tunnel configuration [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 220: 104830. DOI: https://doi.org/10.1016/j.jweia.2021.104830.

    Article  Google Scholar 

  16. CHU C R, CHIEN S Y, WANG C Y, et al. Numerical simulation of two trains intersecting in a tunnel [J]. Tunnelling and Underground Space Technology, 2014, 42: 161–174. DOI: https://doi.org/10.1016/j.tust.2014.02.013.

    Article  Google Scholar 

  17. CHEN Xiao-dong, LIU Tang-hong, ZHOU Xi-sai, et al. Analysis of the aerodynamic effects of different nose lengths on two trains intersecting in a tunnel at 350 km/h [J]. Tunnelling and Underground Space Technology, 2017, 66: 77–90. DOI: https://doi.org/10.1016/j.tust.2017.04.004.

    Article  Google Scholar 

  18. NIU Ji-qiang, WANG Yue-ming, ZHANG Lei, et al. Numerical analysis of aerodynamic characteristics of highspeed train with different train nose lengths [J]. International Journal of Heat and Mass Transfer, 2018, 127: 188–199. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.041.

    Article  Google Scholar 

  19. LIU Tang-hong, JIANG Zhen-hua, CHEN Xiao-dong, et al. Wave effects in a realistic tunnel induced by the passage of high-speed trains [J]. Tunnelling and Underground Space Technology, 2019, 86: 224–235. DOI: https://doi.org/10.1016/j.tust.2019.01.023.

    Article  Google Scholar 

  20. LIU Tang-hong, JIANG Zhen-hua, LI Wen-hui, et al. Differences in aerodynamic effects when trains with different marshalling forms and lengths enter a tunnel [J]. Tunnelling and Underground Space Technology, 2019, 84: 70–81. DOI: https://doi.org/10.1016/j.tust.2018.10.016.

    Article  Google Scholar 

  21. NIU Ji-qiang, ZHOU Dan, LIU Feng, et al. Effect of train length on fluctuating aerodynamic pressure wave in tunnels and method for determining the amplitude of pressure wave on trains [J]. Tunnelling and Underground Space Technology, 2018, 80: 277–289. DOI: https://doi.org/10.1016/j.tust.2018.07.031.

    Article  Google Scholar 

  22. LI Wen-hui, LIU Tang-hong, MARTINEZ-VAZQUEZ P, et al. Aerodynamic effects of a high-speed train travelling through adjoining & separated tunnels [J]. Tunnelling and Underground Space Technology, 2021, 113: 103973. DOI: https://doi.org/10.1016/j.tust.2021.103973.

    Article  Google Scholar 

  23. LIU Tang-hong, CHEN Xiao-dong, LI Wen-hui, et al. Field study on the interior pressure variations in high-speed trains passing through tunnels of different lengths [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 169: 54–66. DOI: https://doi.org/10.1016/j.jweia.2017.07.004.

    Article  Google Scholar 

  24. RICCO P, BARON A, MOLTENI P. Nature of pressure waves induced by a high-speed train travelling through a tunnel [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2007, 95(8): 781–808. DOI: https://doi.org/10.1016/j.jweia.2007.01.008.

    Article  Google Scholar 

  25. KIM J H, RHO J H. Pressure wave characteristics of a high-speed train in a tunnel according to the operating conditions [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2018, 232(3): 928–935. DOI: https://doi.org/10.1177/0954409717702015.

    Article  Google Scholar 

  26. LI Wen-hui, LIU Tang-hong, HUO Xiao-shuai, et al. Influence of the enlarged portal length on pressure waves in railway tunnels with cross-section expansion [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 190: 10–22. DOI: https://doi.org/10.1016/j.jweia.2019.03.031.

    Article  Google Scholar 

  27. HOWE M S. The genetically optimized tunnel-entrance hood [J]. Journal of Fluids and Structures, 2007, 23(8): 1231–1250. DOI: https://doi.org/10.1016/j.jfluidstructs.2007.06.005.

    Article  Google Scholar 

  28. SAITO S. Optimizing cross-sectional area of tunnel entrance hood for high speed rail [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 184: 296–304. DOI: https://doi.org/10.1016/j.jweia.2018.11.028.

    Article  Google Scholar 

  29. NIU Ji-qiang, SUI Yang, YU Qiu-jun, et al. Aerodynamics of railway train/tunnel system: A review of recent research [J]. Energy and Built Environment, 2020, 1(4): 351–375. DOI: https://doi.org/10.1016/j.enbenv.2020.03.003.

    Article  Google Scholar 

  30. RAGHUNATHAN R S, KIM H D, SETOGUCHI T Aerodynamics of high-speed railway train [J]. Progress in Aerospace Sciences, 2002, 38(6–7): 469–514. DOI: https://doi.org/10.1016/S0376-0421(02)00029-5.

    Article  Google Scholar 

  31. LIU Tang-hong, TIAN Hong-qi, LIANG Xi-feng. Aerodynamic effects caused by trains entering tunnels [J]. Journal of Transportation Engineering, 2010, 136(9): 846–853. DOI: https://doi.org/10.1061/(asce)te.1943-5436.0000146.

    Article  Google Scholar 

  32. ZHANG Lei, YANG Ming-zhi, NIU Ji-qiang, et al. Moving model tests on transient pressure and micro-pressure wave distribution induced by train passing through tunnel [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 191: 1–21. DOI: https://doi.org/10.1016/j.jweia.2019.05.006.

    Article  Google Scholar 

  33. LI Wen-hui, LIU Tang-hong, CHEN Zheng-wei, et al. Comparative study on the unsteady slipstream induced by a single train and two trains passing each other in a tunnel [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 198: 104095. DOI: https://doi.org/10.1016/j.jweia.2020.104095.

    Article  Google Scholar 

  34. CHEN T Y, LEE Y T, HSU C C. Investigations of piston-effect and jet fan-effect in model vehicle tunnels [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 73(2): 99–110. DOI: https://doi.org/10.1016/S0167-6105(97)00281-X.

    Article  Google Scholar 

  35. KIM J Y, KIM K Y. Experimental and numerical analyses of train-induced unsteady tunnel flow in subway [J]. Tunnelling and Underground Space Technology, 2007, 22(2): 166–172. DOI: https://doi.org/10.1016/j.tust.2006.06.001.

    Article  Google Scholar 

  36. IZADI T, ABOUALI O, MEHRABIAN M A, et al. Investigation of the effects of different parameters on the generated pressure waves inside the tunnels [J]. SN Applied Sciences, 2020, 2(8): 1–13. DOI: https://doi.org/10.1007/s42452-020-2572-z.

    Article  Google Scholar 

  37. KO Y Y, CHEN C H, HOE I T, et al. Field measurements of aerodynamic pressures in tunnels induced by high speed trains [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 100(1): 19–29. DOI: https://doi.org/10.1016/j.jweia.2011.10.008.

    Article  Google Scholar 

  38. LIU Tang-hong, CHEN Zheng-wei, CHEN Xiao-dong, et al. Transient loads and their influence on the dynamic responses of trains in a tunnel [J]. Tunnelling and Underground Space Technology, 2017, 66: 121–133. DOI: https://doi.org/10.1016/j.tust.2017.04.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHOU Miao-miao provided the concept and edited the draft of the manuscript. LIU Tang-hong conducted the experimental validation. XIA Yu-tao and LI Wen-hui edited the draft of manuscript. CHEN Zheng-wei analyzed the collected data. All authors replied to reviewers’comments and revised the final version.

Corresponding authors

Correspondence to Tang-hong Liu  (刘堂红) or Wen-hui Li  (李文辉).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Project(2017J010-B) supported by the Technology Research and Development Program of China Railway Corporation;Project(414010033) supported by the National Natural Science Foundation of China;Project(CX20210232) supported by Hunan Provincial Innovation Foundation for Postgraduate, China;Projects(2021zzts0671, 2021zzts0163) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Mm., Liu, Th., Xia, Yt. et al. Comparative investigations of pressure waves induced by trains passing through a tunnel with different speed modes. J. Cent. South Univ. 29, 2639–2653 (2022). https://doi.org/10.1007/s11771-022-5098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5098-2

Key words

关键词

Navigation