Skip to main content
Log in

Cyclic test and numerical study of seismic performance of precast segmental concrete double-columns

预制节段拼装混凝土双柱墩的抗震性能拟静力试验分析

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The comparative research on the seismic performance of grouted sleeve connected pier (GS) and prestressed precast segmental concrete pier (PC) is mostly carried out by numerical simulation. In this study, the GS pier and the PC pier of the new railway project from Hetian to Ruoqiang are taken into consideration. Two kinds of 1/5-scale assembled double-column specimens are made, and the quasi-static tests are carried out. The overall seismic performance of the two spliced piers is studied, and compared in terms of failure mechanism, bearing capacity, ductility, stiffness and energy dissipation capacity. The results show that the failure modes of both GS pier and PC pier are characterized by bending. However, the specific failure location and form are different. The GS pier presents a complete hysteretic curve, large equivalent stiffness and strong energy dissipation capacity. The hysteretic area of the PC pier is small. However, it has good self-reset ability and quasi-static residual displacement. Finite element models are set up using DispBeamColumn fiber elements and ZeroLength elements. The models that are calibrated with the test data can effectively simulate the damage development under monotonic loading. The load—displacement curves are in good agreement with the backbone curves of the test results.

摘要

本文以和田至若羌新建铁路项目中的灌浆套筒拼接与预应力节段预制拼接混凝土双柱墩为研究对象,通过实验室缩尺拟静力试验和数值分析,从破坏模式、承载力、延性、等效刚度和耗能能力等方面,对比研究了两种拼接形式双柱墩的抗震性能。研究结果表明,灌浆套筒拼接和预应力节段预制拼接双柱墩的破坏模式均为弯曲破坏。然而,灌浆套筒拼接桥墩的破坏模式与传统现浇桥墩相似,主要表现为墩底接缝处的混凝土压碎。预应力节段预制拼接桥墩的破坏主要表现为墩身与承台拼接处摇摆节点的形成。灌浆套筒拼接桥墩滞回曲线饱满,等效刚度大,耗能能力强。预应力节段预制拼接桥墩的滞回耗能较小,但是,它具有良好的自复位能力。用试验数据标定的基于位移的梁柱单元和零长单元建立的有限元模型可以有效地模拟单调加载下的装配式桥墩力学性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHOU Yi-hui, OU Yu-chen, LEE G C. Bond-slip responses of stainless reinforcing bars in grouted ducts [J]. Engineering Structures, 2017, 141: 651–665. DOI: https://doi.org/10.1016/j.engstruct.2017.03.049.

    Article  Google Scholar 

  2. LI Chao, HAO Hong, BI Kai-ming. Seismic performance of precast concrete-filled circular tube segmental column under biaxial lateral cyclic loadings [J]. Bulletin of Earthquake Engineering, 2019, 17(1): 271–296. DOI: https://doi.org/10.1007/s10518-018-0443-4.

    Article  Google Scholar 

  3. TONG Teng, ZHUO Wei-ding, JIANG Xiao-fang, et al. Research on seismic resilience of prestressed precast segmental bridge piers reinforced with high-strength bars through experimental testing and numerical modelling [J]. Engineering Structures, 2019, 197: 109335. DOI: https://doi.org/10.1016/j.engstruct.2019.109335.

    Article  Google Scholar 

  4. BU Zhan-yu, OU Yu-chen, SONG Jian-wei, et al. Cyclic loading test of unbonded and bonded posttensioned precast segmental bridge columns with circular section [J]. Journal of Bridge Engineering, 2016, 21(2): 04015043. DOI: https://doi.org/10.1061/(asce)be.1943-5592.0000807.

    Article  Google Scholar 

  5. OU Yu-chen, CHIEWANICHAKORN M, AREF A J, et al. Seismic performance of segmental precast unbonded posttensioned concrete bridge columns [J]. Journal of Structural Engineering, 2007, 133(11): 1636–1647. DOI: https://doi.org/10.1061/(asce)0733-9445(2007)133:11(1636).

    Article  Google Scholar 

  6. XIA Zhang-hua, GE Ji-ping, LIN You-qin, et al. Shake table study on precast segmental concrete double-column piers [J]. Earthquake Engineering and Engineering Vibration, 2020, 19(3): 705–723. DOI: https://doi.org/10.1007/s11803-020-0590-x.

    Article  Google Scholar 

  7. ZHANG Yu-ye, WU Gang, DIAS-DA-COSTA D. Cyclic loading tests and analyses of posttensioned concrete bridge columns combining cast-in-place and precast segments [J]. Bulletin of Earthquake Engineering, 2019, 17(11): 6141–6163. DOI: https://doi.org/10.1007/s10518-019-00714-0.

    Article  Google Scholar 

  8. LI Tian-tian, QU Hong-ya, WANG Zhi-qiang, et al. Seismic performance of precast concrete bridge columns with quasistatic cyclic shear test for high seismic zones [J]. Engineering Structures, 2018, 166: 441–453. DOI: https://doi.org/10.1016/j.engstruct.2018.03.086.

    Article  Google Scholar 

  9. ZHUO Wei-ding, LIU Zhao, ZHANG Jian-dong, et al. Comparison study on hysteretic energy dissipation and displacement components between cast-in-place and precast piers with high-strength bars [J]. Structural Concrete, 2018, 19(3): 747–757. DOI: https://doi.org/10.1002/suco.201700050.

    Article  Google Scholar 

  10. ICHINOSE T, KANAYAMA Y, INOUE Y, et al. Size effect on bond strength of deformed bars [J]. Construction and Building Materials, 2004, 18(7): 549–558. DOI: https://doi.org/10.1016/j.conbuildmat.2004.03.014.

    Article  Google Scholar 

  11. MURCIA-DELSO J, STAVRIDIS A, SHING P B. Bond strength and cyclic bond deterioration of large-diameter bars [J]. ACI Structural Journal, 2013, 110(4): 659–669.

    Google Scholar 

  12. BU Zhan-yu, GUO Jian, ZHENG Rong-yue, et al. Cyclic performance and simplified pushover analyses of precast segmental concrete bridge columns with circular section [J]. Earthquake Engineering and Engineering Vibration, 2016, 15(2): 297–312. DOI: https://doi.org/10.1007/s11803-016-0323-3.

    Article  Google Scholar 

  13. KURAMA Y C, SRITHARAN S, FLEISCHMAN R B, et al. Seismic-resistant precast concrete structures: State of the art [J]. Journal of Structural Engineering, 2018, 144(4): 03118001. DOI: https://doi.org/10.1061/(asce)st.1943-541x.0001972.

    Article  Google Scholar 

  14. WANG Zhi-qiang, QU Hong-ya, LI Tian-tian, et al. Quasistatic cyclic tests of precast bridge columns with different connection details for high seismic zones [J]. Engineering Structures, 2018, 158: 13–17. DOI: https://doi.org/10.1016/j.engstruct.2017.12.035

    Article  Google Scholar 

  15. LU Zheng, WANG Zi-xin, LI Jian-bao, et al. Studies on seismic performance of precast concrete columns with grouted splice sleeve [J]. Applied Sciences, 2017, 7(6): 571. DOI: https://doi.org/10.3390/app7060571.

    Article  Google Scholar 

  16. LI Jian-bao, FAN Qiao-qiao, LU Zheng, et al. Experimental study on seismic performance of T-shaped partly precast reinforced concrete shear wall with grouting sleeves [J]. The Structural Design of Tall and Special Buildings, 2019, 28(13): e1632. DOI: https://doi.org/10.1002/tal.1632.

    Google Scholar 

  17. HABER Z B, SAIIDI M S, SANDERS D H. Seismic performance of precast columns with mechanically spliced column-footing connections [J]. ACI Structural Journal, 2014, 111(3): 639–650. DOI: https://doi.org/10.14359/51686624.

    Article  Google Scholar 

  18. AMELI M J, PARKS J E, BROWN D N, et al. Seismic evaluation of grouted splice sleeve connections for reinforced precast concrete column-to-cap beam joints in accelerated bridge construction [J]. PCI Journal, 2015, 60(2): 80–103. DOI: https://doi.org/10.15554/pcij.03012015.80.103.

    Article  Google Scholar 

  19. HABER Z B, MACKIE K R, AL-JELAWY H M. Testing and analysis of precast columns with grouted sleeve connections and shifted plastic hinging [J]. Journal of Bridge Engineering, 2017, 22(10): 04017078. DOI: https://doi.org/10.1061/(asce)be.1943-5592.0001105.

    Article  Google Scholar 

  20. AMELI M J, PANTELIDES C P. Seismic analysis of precast concrete bridge columns connected with grouted splice sleeve connectors [J]. Journal of Structural Engineering, 2017, 143(2): 04016176. DOI: https://doi.org/10.1061/(asce)st.1943-541x.0001678.

    Article  Google Scholar 

  21. HABER Z B, SAIIDI M S, SANDERS D H. Behavior and simplified modeling of mechanical reinforcing bar splices [J]. ACI Structural Journal, 2015, 112(2): 179–188. DOI: https://doi.org/10.14359/51687455.

    Article  Google Scholar 

  22. QU Hong-ya, LI Tian-tian, WANG Zhi-qiang, et al. Investigation and verification on seismic behavior of precast concrete frame pier used in real bridge structures: Experimentatl and numerical study [J]. Engineering Structures, 2018, 154: 1–9. DOI: https://doi.org/10.1016/j.engstruct.2017.10.069.

    Article  Google Scholar 

  23. BILLINGTON S L, BARNES R W, BREEN J E. A precast segmental substructure system for standard bridges [J]. PCI Journal, 1999, 44(4): 56–73. DOI: https://doi.org/10.15554/pcij.07011999.56.73.

    Article  Google Scholar 

  24. LI Shuai, ZHAO Tai-yi, ALAM M S, et al. Probabilistic seismic vulnerability and loss assessment of a seismic resistance bridge system with post-tensioning precast segmental ultra-high performance concrete bridge columns [J]. Engineering Structures, 2020, 225(15): 111321. DOI: https://doi.org/10.1016/j.engstruct.2020.111321.

    Article  Google Scholar 

  25. HEWES J T, PRISTLEY M J N. Seismic design and performance of precast concrete segmental bridge columns [R]. San Diego: University of California at San Diego, 2002.

    Google Scholar 

  26. GE Ji-ping, YAN Xing-fei, WANG Zhi-qiang. Seismic performance analysis of two-segment bridge columns with prestressing bars [J]. Journal of Railway Science and Engineering, 2017, 14(11): 2390–2398. DOI: https://doi.org/10.3969/j.issn.1672-7029.2017.11.017. (in Chinese)

    Google Scholar 

  27. JIA Jun-feng, ZHAO Jian-yu, ZHANG Qiang, et al. Experiment on lateral bearing behavior of post-tensioned segmental CFST bridge pier columns [J]. China Journal of Highway and Transport, 2017, 30(3): 236–245. DOI: https://doi.org/10.19721/j.cnki.1001-7372.2017.03.026. (in Chinese)

    Google Scholar 

  28. WANG Zhen, WANG Jing-quan, LIU Tong-xu. Axial compression ratio limit for self-centering precast segmental hollow piers [J]. Structural Concrete, 2017, 18(5): 668–679. DOI: https://doi.org/10.1002/suco.201600152.

    Article  Google Scholar 

  29. ZOU Shuang, WENLIUHAN H, ZHOU Fu-lin. Shaking table test of a high-speed railway bridge with a new isolation system [J]. Engineering Structures, 2019, 196: 109315. DOI: https://doi.org/10.1016/j.engstruct.2019.109315.

    Article  Google Scholar 

  30. YAO Qian-feng, CHEN Ping. Structural test of civil engineering [M]. Beijing: China Construction Industry Press, 2001. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by WENLIUHAN Hei-sha. ZOU Shuang provided the test results. The initial draft of the manuscript was written by ZOU Shuang and WENLIUHAN Hei-sha. MAO Yong-ping, YU Bi-ping and ZHANG Chong-bin provided provision of test pier samples. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Hei-sha Wenliuhan  (温留汉黑沙).

Additional information

Conflict of interest

ZOU Shuang, WENLIUHAN Hei-sha, MAO Yong-ping, YU Bi-peng and ZHANG Chong-bin declare that they have no conflict of interest.

Foundation item: Project(N2018G034) supported by China Railway Corporation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, S., Wenliuhan, Hs., Mao, Yp. et al. Cyclic test and numerical study of seismic performance of precast segmental concrete double-columns. J. Cent. South Univ. 29, 2502–2512 (2022). https://doi.org/10.1007/s11771-022-5092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5092-8

Key words

关键词

Navigation