Skip to main content
Log in

Nonlinear free vibration of graphene platelets reinforced composite corrugated plates

石墨烯片增强复合材料波纹板的非线性自由振动

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The nonlinear vibration of graphene platelets reinforced composite corrugated (GPRCC) rectangular plates with shallow trapezoidal corrugations is investigated. Since graphene platelets are prone to agglomeration, a multi-layer distribution is adopted here to match the engineering requirements. Firstly, an equivalent composite plate model is obtained, and then nonlinear equations of motion are derived by the von Kármán nonlinear geometric relationship and Hamilton’s principle. Afterwards, the Galerkin method and harmonic balance method are used to obtain an approximate analytical solution. Results show that the unit cell half period, unit cell inclination angle, unit cell height, graphene platelet dispersion pattern and graphene platelet weight fraction and geometry play important roles in the nonlinear vibration of the GPRCC plates.

摘要

本文研究了石墨烯片增强复合材料波纹(GPRCC)板的非线性自由振动。首先,基于均质化模型建立GPRCC板的等效模型; 其次,利用von-Kármán 非线性几何关系和Hamilton 原理变分推导出非线性运动方程。然后,采用伽辽金法和谐波平衡法得到GPRCC板的近似解析解。结果表明,晶胞半周期长、晶胞倾角、晶胞高度、石墨烯片分布类型、石墨烯片重量分数以及石墨烯片的几何尺寸对GPRCC板非线性振动有重要的影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HA N S, LU Guo-xing. Thin-walled corrugated structures: A review of crashworthiness designs and energy absorption characteristics [J]. Thin-Walled Structures, 2020, 157: 106995. DOI: https://doi.org/10.1016/j.tws.2020.106995.

    Article  Google Scholar 

  2. LIU Yun-fei, HU Wen-yang, ZHU Run-ze, et al. Dynamic responses of corrugated cylindrical shells subjected to nonlinear low-velocity impact [J]. Aerospace Science and Technology, 2022, 121: 107321. DOI: https://doi.org/10.1016/j.ast.2021.107321.

    Article  Google Scholar 

  3. LIU Jin-can, DENG Xiao-wei, WANG Qing-shan, et al. A unified modeling method for dynamic analysis of GPL-reinforced FGP plate resting on Winkler-Pasternak foundation with elastic boundary conditions [J]. Composite Structures, 2020, 244: 112217. DOI: https://doi.org/10.1016/j.compstruct.2020.112217

    Article  Google Scholar 

  4. CHEN Zheng-xiong, WANG Ai-lun, QIN Bin, et al. Investigation on free vibration and transient response of functionally graded graphene platelets reinforced cylindrical shell resting on elastic foundation [J]. The European Physical Journal Plus, 2020, 135(7): 582. DOI: https://doi.org/10.1140/epjp/s13360-020-00577-4.

    Article  Google Scholar 

  5. QIN Bin, WANG Qing-shan, ZHONG Rui, et al. A three-dimensional solution for free vibration of FGP-GPLRC cylindrical shells resting on elastic foundations: A comparative and parametric study [J]. International Journal of Mechanical Sciences, 2020, 187: 105896. DOI: https://doi.org/10.1016/j.ijmecsci.2020.105896.

    Article  Google Scholar 

  6. ZHENG Y, ZHANG W, LIU T, et al. Resonant responses and double-parameter multi-pulse chaotic vibrations of graphene platelets reinforced functionally graded rotating composite blade [J]. Chaos, Solitons & Fractals, 2022, 156: 111855. DOI: https://doi.org/10.1016/j.chaos.2022.111855.

    Article  MathSciNet  Google Scholar 

  7. YOUNG R J, KINLOCH I A, GONG Lei, et al. The mechanics of graphene nanocomposites: A review [J]. Composites Science and Technology, 2012, 72(12): 1459–1476. DOI: https://doi.org/10.1016/j.compscitech.2012.05.005.

    Article  Google Scholar 

  8. SHI Ge, ARABY S, GIBSON C T, et al. Graphene platelets and their polymer composites: Fabrication, structure, properties, and applications [J]. Advanced Functional Materials, 2018, 28(19): 1706705. DOI: https://doi.org/10.1002/adfm.201706705.

    Article  Google Scholar 

  9. LI Lei, LUO Zhong, HE Feng-xia, et al. An improved partial similitude method for dynamic characteristic of rotor systems based on Levenberg-Marquardt method [J]. Mechanical Systems and Signal Processing, 2022, 165: 108405. DOI: https://doi.org/10.1016/j.ymssp.2021.108405.

    Article  Google Scholar 

  10. SUN Shu-peng, LIU Lun. Multiple internal resonances in nonlinear vibrations of rotating thin-walled cylindrical shells [J]. Journal of Sound and Vibration, 2021, 510: 116313. DOI: https://doi.org/10.1016/j.jsv.2021.116313.

    Article  Google Scholar 

  11. LU Ze-qi, SHAO Dong, FANG Zhi-wei, et al. Integrated vibration isolation and energy harvesting via a bistable piezocomposite plate [J]. Journal of Vibration and Control, 2020, 26(9–10): 779–789. DOI: https://doi.org/10.1177/1077546319889815.

    Article  MathSciNet  Google Scholar 

  12. WANG Jun, LIU Yun-fei, QIN Zhao-ye, et al. Dynamic performance of a novel integral magnetorheological damper-rotor system [J]. Mechanical Systems and Signal Processing, 2022, 172: 109004. DOI: https://doi.org/10.1016/j.ymssp.2022.109004.

    Article  Google Scholar 

  13. SAFAEI B, NASERADINMOUSAVI P, RAHMANI A. Development of an accurate molecular mechanics model for buckling behavior of multi-walled carbon nanotubes under axial compression [J]. Journal of Molecular Graphics and Modelling, 2016, 65: 43–60. DOI: https://doi.org/10.1016/j.jmgm.2016.02.001.

    Article  Google Scholar 

  14. FAN Fan, LEI Biao, SAHMANI S, et al. On the surface elastic-based shear buckling characteristics of functionally graded composite skew nanoplates [J]. Thin-Walled Structures, 2020, 154: 106841. DOI: https://doi.org/10.1016/j.tws.2020.106841.

    Article  Google Scholar 

  15. DAI Qi-yi, LIU Yun-fei, QIN Zhao-ye, et al. Damping and frequency response characteristics of functionally graded fiber-reinforced composite cylindrical shells [J]. International Journal of Structural Stability and Dynamics, 2022, 22(9): 2250107. DOI: https://doi.org/10.1142/s0219455422501073.

    Article  MathSciNet  Google Scholar 

  16. LIU Yun-fei, QIN Zhao-ye, CHU Fu-lei. Analytical study of the impact response of shear deformable sandwich cylindrical shell with a functionally graded porous core [J]. Mechanics of Advanced Materials and Structures, 2022, 29(9): 1338–1347. DOI: https://doi.org/10.1080/15376494.2020.1818904.

    Article  Google Scholar 

  17. XIE Bang-hua, SAHMANI S, SAFAEI B, et al. Nonlinear secondary resonance of FG porous silicon nanobeams under periodic hard excitations based on surface elasticity theory [J]. Engineering with Computers, 2021, 37(2): 1611–1634. DOI: https://doi.org/10.1007/s00366-019-00931-w.

    Article  Google Scholar 

  18. LIU Yun-fei, LING Xue, WANG Yan-qing. Free and forced vibration analysis of 3D graphene foam truncated conical microshells [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2021, 43(3): 1–12. DOI: https://doi.org/10.1007/s40430-021-02841-9.

    Article  Google Scholar 

  19. GUAN Xian-lei, ZHONG Rui, QIN Bin, et al. A unified prediction solution for vibro-acoustic analysis of composite laminated elliptical shells immersed in air [J]. Journal of Central South University, 2021, 28(2): 429–444. DOI: https://doi.org/10.1007/s11771-021-4613-1.

    Article  Google Scholar 

  20. SAFAEI B. Frequency-dependent damped vibrations of multifunctional foam plates sandwiched and integrated by composite faces [J]. The European Physical Journal Plus, 2021, 136(6): 646. DOI: https://doi.org/10.1140/epjp/s13360-021-01632-4.

    Article  Google Scholar 

  21. SAFAEI B. The effect of embedding a porous core on the free vibration behavior of laminated composite plates [J]. Steel and Composite Structures, 2020, 35(5): 659–670. DOI: https://doi.org/10.12989/scs.2020.35.5.659.

    Google Scholar 

  22. YANG Shao-wu, HAO Yu-xin, ZHANG Wei, et al. Nonlinear vibration of functionally graded graphene platelet-reinforced composite truncated conical shell using first-order shear deformation theory [J]. Applied Mathematics and Mechanics, 2021, 42(7): 981–998. DOI: https://doi.org/10.1007/s10483-021-2747-9.

    Article  MathSciNet  MATH  Google Scholar 

  23. WANG Yu, FENG Chuang, YANG Jie, et al. Nonlinear vibration of FG-GPLRC dielectric plate with active tuning using differential quadrature method [J]. Computer Methods in Applied Mechanics and Engineering, 2021, 379: 113761. DOI: https://doi.org/10.1016/j.cma.2021.113761.

    Article  MathSciNet  MATH  Google Scholar 

  24. FATTAHI A M, SAFAEI B. Free vibrational response of single-layered graphene sheets embedded in an elastic matrix using different nonlocal plate models [J]. Mechanics, 2017, 23(5): 678–687. DOI: https://doi.org/10.5755/j01.mech.23.5.14883.

    Article  Google Scholar 

  25. WANG Yu, FENG Chuang, YANG Jie, et al. Static response of functionally graded graphene platelet — reinforced composite plate with dielectric property [J]. Journal of Intelligent Material Systems and Structures, 2020, 31(19): 2211–2228. DOI: https://doi.org/10.1177/1045389x20943955

    Article  Google Scholar 

  26. WANG Yu, ZHOU Yu-xian, FENG Chuang, et al. Numerical analysis on stability of functionally graded graphene platelets (GPLs) reinforced dielectric composite plate [J]. Applied Mathematical Modelling, 2022, 101: 239–258. DOI: https://doi.org/10.1016/j.apm.2021.08.003.

    Article  MathSciNet  MATH  Google Scholar 

  27. GHOLAMI R, ANSARI R. Nonlinear stability and vibration of pre/post-buckled multilayer FG-GPLRPC rectangular plates [J]. Applied Mathematical Modelling, 2019, 65: 627–660. DOI: https://doi.org/10.1016/j.apm.2018.08.038.

    Article  MathSciNet  MATH  Google Scholar 

  28. GHOLAMI R, ANSARI R. Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates [J]. Engineering Structures, 2018, 156: 197–209. DOI: https://doi.org/10.1016/j.engstruct.2017.11.019.

    Article  Google Scholar 

  29. GHOLAMI R, ANSARI R. Asymmetric nonlinear bending analysis of polymeric composite annular plates reinforced with graphene nanoplatelets [J]. International Journal for Multiscale Computational Engineering, 2019, 17(1): 45–63. DOI: https://doi.org/10.1615/intjmultcompeng.2019029156.

    Article  Google Scholar 

  30. GHOLAMI R, ANSARI R. On the nonlinear vibrations of polymer nanocomposite rectangular plates reinforced by graphene nanoplatelets: A unified higher-order shear deformable model [J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2019, 43(1): 603–620. DOI: https://doi.org/10.1007/s40997-018-0182-9.

    Article  Google Scholar 

  31. XIA Y, FRISWELL M I, FLORES E I S. Equivalent models of corrugated panels [J]. International Journal of Solids and Structures, 2012, 49(13): 1453–1462. DOI: https://doi.org/10.1016/j.ijsolstr.2012.02.023.

    Article  Google Scholar 

  32. REDDY J N. Theory and analysis of elastic plates and shells [M]. Boca Raton: CRC Press, 2006.

    Book  Google Scholar 

  33. AMABILI M. Nonlinear vibrations of rectangular plates with different boundary conditions: Theory and experiments [J]. Computers & Structures, 2004, 82(31–32): 2587–2605. DOI: https://doi.org/10.1016/j.compstruc.2004.03.077.

    Article  Google Scholar 

  34. LIU Yun-fei, QIN Zhao-ye, CHU Fu-lei. Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate [J]. Nonlinear Dynamics, 2021, 104(2): 1007–1021. DOI: https://doi.org/10.1007/s11071-021-06358-7.

    Article  Google Scholar 

  35. YI Hong-wei, SAHMANI S, SAFAEI B. On size-dependent large-amplitude free oscillations of FGPM nanoshells incorporating vibrational mode interactions [J]. Archives of Civil and Mechanical Engineering, 2020, 20(2): 1–23. DOI: https://doi.org/10.1007/s43452-020-00047-9.

    Article  Google Scholar 

  36. LIU Yun-fei, QIN Zhao-ye, CHU Fu-lei. Investigation of magneto-electro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells [J]. Communications in Nonlinear Science and Numerical Simulation, 2022, 107: 106146. DOI: https://doi.org/10.1016/j.cnsns.2021.106146.

    Article  MathSciNet  MATH  Google Scholar 

  37. DAI Qi-yi, LIU Yun-fei, QIN Zhao-ye, et al. Nonlinear damping and forced response of laminated composite cylindrical shells with inherent material damping [J]. International Journal of Applied Mechanics, 2021, 13(5): 2150060. DOI: https://doi.org/10.1142/s1758825121500605.

    Article  Google Scholar 

  38. LIU Yun-fei, QIN Zhao-ye, CHU Fu-lei. Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads [J]. International Journal of Mechanical Sciences, 2021, 201: 106474. DOI: https://doi.org/10.1016/j.ijmecsci.2021.106474.

    Article  Google Scholar 

  39. LIU Yun-fei, QIN Zhao-ye, CHU Fu-lei. Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1: 1 internal resonance [J]. Applied Mathematics and Mechanics, 2021, 42(6): 805–818. DOI: https://doi.org/10.1007/s10483-021-2740-7.

    Article  MathSciNet  MATH  Google Scholar 

  40. NAYFEH ALI H, MOOK DEAN T. NAYFEH ALI H., MOOK DEAN T [M]. New York: John Wiley & Sons, 2008.

  41. BHAT R B. Natural frequencies of rectangular plates using characteristic orthogonal polynomials in Rayleigh-ritz method [J]. Journal of Sound and Vibration, 1985, 102(4): 493–499. DOI: https://doi.org/10.1016/S0022-460X(85)80109-7.

    Article  Google Scholar 

  42. SATHYAMOORTHY M. Effects of large amplitude, shear and rotatory inertia on vibration of rectangular plates [J]. Journal of Sound and Vibration, 1979, 63(2): 161–167. DOI: https://doi.org/10.1016/0022-460X(79)90873-3.

    Article  MATH  Google Scholar 

  43. CHEN Chun-sheng, CHENG Wei-seng, CHIEN R D, et al. Large amplitude vibration of an initially stressed cross ply laminated plates [J]. Applied Acoustics, 2002, 63(9): 939–956. DOI: https://doi.org/10.1016/S0003-682X(02)00015-4.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

LIU Yun-fei: Conceptualization, methodology, validation, writing original draft; QIN Zhao-ye: Conceptualization, methodology, writing review & editing, supervision. CHU Fu-lei: Conceptualization, supervision.

Corresponding author

Correspondence to Zhao-ye Qin  (秦朝烨).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Project(11972204) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Yf., Qin, Zy. & Chu, Fl. Nonlinear free vibration of graphene platelets reinforced composite corrugated plates. J. Cent. South Univ. 29, 3054–3064 (2022). https://doi.org/10.1007/s11771-022-5086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5086-6

Key words

关键词

Navigation