Skip to main content
Log in

Combustion and emission characteristics of diesel/n-butanol blends with split-injection and exhaust gas recirculation stratification

分段喷射耦合EGR分层的柴油/正丁醇混合物燃烧和排放特性研究

  • The 2nd World Congress on Internal Combustion Engines
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Oxygen fuels have broad application prospects and great potential for realizing efficient and clean combustion, and hence this study applies diesel/n-butanol blends to explore the influence of split-injection strategy on combustion and emission characteristics. Simultaneously, changing the way of exhaust gas recirculation (EGR) gas introduction forms uneven in-cylinder components distribution, and utilizing EGR stratification optimizes the combustion process and allows better emission results. The results show that the split-injection strategy can reduce the NOx emissions and keep smoke opacity low compared with the single injection, but the rise in accumulation mode particles is noticeable. NOx emissions show an upward trend as the injection interval expands, while soot emissions are significantly reduced. The increase in pre-injection proportion causes the apparent low-temperature heat release, and the two-stage heat release can be observed during the process of main combustion heat release. More pre-injection mass makes NOx gradually increase, but smoke opacity reaches the lowest point at 15% pre-injection proportion. EGR stratification can optimize the emission results under the split injection strategy, especially the considerable suppression of accumulation mode particulate emissions. Above all, fuel stratification coupled with EGR stratification is beneficial for further realizing the in-cylinder purification of pollutants.

摘要

含氧燃料具有广阔的应用前景和实现高效清洁燃烧的巨大潜力,因此本研究探索了分段喷射策略对燃用柴油/正丁醇混合物的燃烧和排放特性的影响。同时通过改变EGR气体引入方式以在缸内形成组分不均匀分布,利用EGR分层优化燃烧过程并获得了更好的排放结果。结果表明,与单次喷射相比,分段喷射策略可以有效减少NOx的排放并保持较低烟度,但积聚态微粒颗粒的数量明显增加。NOx的排放量随着喷射间隔的扩大而呈现上升趋势,而碳烟排放量则随之显著减少。预喷比例的增加引起了明显的低温放热,并可以观察到在主放热过程中出现了两级放热。更多的预喷质量使NOx逐渐增加,但在15%的预喷比例时获得了最小的不透光烟度值。EGR分层可以优化分段喷射策略下燃料燃烧的排放结果,不仅可以进一步降低NOx排放而且对积聚态微粒排放也有着出色的抑制能力。总之,燃油分层结合EGR分层有利于实现污染物的缸内净化。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PARTOAA A A, ABDOLZADEH M, REZAEIZADEH M. Effect of fin attachment on thermal stress reduction of exhaust manifold of an off road diesel engine [J]. Journal of Central South University, 2017, 24(3): 546–559. DOI: https://doi.org/10.1007/s11771-017-3457-1.

    Article  Google Scholar 

  2. CHO J, KIM K, BAEK S, et al. Abatement potential analysis on CO2 and size-resolved particle emissions from a downsized LPG direct injection engine for passenger car [J]. Atmospheric Pollution Research, 2019, 10(6): 1711–1722. DOI: https://doi.org/10.1016/j.apr.2019.07.002.

    Article  Google Scholar 

  3. GENG Peng, CAO Er-ming, TAN Qin-ming, et al. Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review [J]. Renewable and Sustainable Energy Reviews, 2017, 71: 523–534. DOI: https://doi.org/10.1016/j.rser.2016.12.080.

    Article  Google Scholar 

  4. PHOUNGTHONG K, TEKASAKUL S, TEKASAKUL P, et al. Comparison of particulate matter and polycyclic aromatic hydrocarbons in emissions from IDI-turbo diesel engine fueled by palm oil-diesel blends during long-term usage [J]. Atmospheric Pollution Research, 2017, 8(2): 344–350. DOI: https://doi.org/10.1016/j.apr.2016.10.006.

    Article  Google Scholar 

  5. KAMIMOTO T, BAE M H. High combustion temperature for the reduction of particulate in diesel engines [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1988. DOI: https://doi.org/10.4271/880423.

    Book  Google Scholar 

  6. CHEN Zheng, QIN Tao, HE Ting-pu, et al. Effect of equivalence ratio on diesel direct injection spark ignition combustion [J]. Journal of Central South University, 2020, 27(8): 2338–2352. DOI: https://doi.org/10.1007/s11771-020-4453-4.

    Article  Google Scholar 

  7. KOSAKA H, AIZAWA T, KAMIMOTO T. Two-dimensional imaging of ignition and soot formation processes in a diesel flame [J]. International Journal of Engine Research, 2005, 6(1): 21–42. DOI: https://doi.org/10.1243/146808705x7347.

    Article  Google Scholar 

  8. JIN Chao, YAO Ming-fa, LIU Hai-feng, et al. Progress in the production and application of n-butanol as a biofuel [J]. Renewable and Sustainable Energy Reviews, 2011, 15(8): 4080–4106. DOI: https://doi.org/10.1016/j.rser.2011.06.001.

    Article  Google Scholar 

  9. LI Yuan-xu, NING Zhi, YAN Jun-hao, et al. Experimental investigation on combustion and unregulated emission characteristics of butanol-isomer/gasoline blends [J]. Journal of Central South University, 2019, 26(8): 2244–2258. DOI: https://doi.org/10.1007/s11771-019-4170-z.

    Article  Google Scholar 

  10. RAKOPOULOS C D, RAKOPOULOS D C, GIAKOUMIS E G, et al. The combustion of n-butanol/diesel fuel blends and its cyclic variability in a direct injection diesel engine [J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2011, 225(3): 289–308. DOI: https://doi.org/10.1177/2041296710394256.

    Google Scholar 

  11. LIU Hai-feng, LEE C F, HUO Ming, et al. Comparison of ethanol and butanol as additives in soybean biodiesel using a constant volume combustion chamber [J]. Energy & Fuels, 2011, 25(4): 1837–1846. DOI: https://doi.org/10.1021/ef200111g.

    Article  Google Scholar 

  12. CHEN Gui-sheng, SHEN Ying-gang, ZHANG Quan-chang, et al. Experimental study on combustion and emission characteristics of a diesel engine fueled with 2, 5-dimethylfuran-diesel, n-butanol-diesel and gasoline-diesel blends [J]. Energy, 2013, 54: 333–342. DOI: https://doi.org/10.1016/j.energy.2013.02.069.

    Article  Google Scholar 

  13. LU Xing-cai, HAN Dong, HUANG Zhen. Fuel design and management for the control of advanced compression-ignition combustion modes [J]. Progress in Energy and Combustion Science, 2011, 37(6): 741–783. DOI: https://doi.org/10.1016/j.pecs.2011.03.003.

    Article  Google Scholar 

  14. LI Yu-qiang, TANG Wei, CHEN Yong, et al. Potential of acetone-butanol-ethanol (ABE) as a biofuel [J]. Fuel, 2019, 242: 673–686. DOI: https://doi.org/10.1016/j.fuel.2019.01.063.

    Article  Google Scholar 

  15. LI Yu-qiang, CHEN Yong, WU Gang, et al. Experimental comparison of acetone-n-butanol-ethanol (ABE) and isopropanol-n-butanol-ethanol (IBE) as fuel candidate in spark-ignition engine [J]. Applied Thermal Engineering, 2018, 133: 179–187. DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.132.

    Article  Google Scholar 

  16. LI Yu-qiang, CHEN Yong, WU Gang, et al. Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine [J]. Applied Energy, 2018, 219: 42–52. DOI: https://doi.org/10.1016/j.apenergy.2018.03.051.

    Article  Google Scholar 

  17. ZHAO Hua. HCCI and CAI engines for the automotive industry [M]. Cambridge: Woodhead Publishing, 2007.

    Book  Google Scholar 

  18. REITZ R D. Directions in internal combustion engine research [J]. Combustion and Flame, 2013, 160(1): 1–8. DOI: https://doi.org/10.1016/j.combustflame.2012.11.002.

    Article  MathSciNet  Google Scholar 

  19. KRISHNASAMY A, GUPTA S K, REITZ R D. Prospective fuels for diesel low temperature combustion engine applications: A critical review [J]. International Journal of Engine Research, 2021, 22(7): 2071–2106. DOI: https://doi.org/10.1177/1468087420960857.

    Article  Google Scholar 

  20. MAGHBOULI A, YANG Wen-ming, AN Hui, et al. Effects of injection strategies and fuel injector configuration on combustion and emission characteristics of a D. I. diesel engine fueled by bio-diesel [J]. Renewable Energy, 2015, 76: 687–698. DOI: https://doi.org/10.1016/j.renene.2014.11.092.

    Article  Google Scholar 

  21. FITZGERALD R P, STEEPER R. Thermal and chemical effects of NVO fuel injection on HCCI combustion [J]. SAE International Journal of Engines, 2010, 3(1): 46–64. DOI: https://doi.org/10.4271/2010-01-0164.

    Article  Google Scholar 

  22. CUNG K, MOIZ A, JOHNSON J, et al. Spray-combustion interaction mechanism of multiple-injection under diesel engine conditions [J]. Proceedings of the Combustion Institute, 2015, 35(3): 3061–3068. DOI: https://doi.org/10.1016/j.proci.2014.07.054.

    Article  Google Scholar 

  23. KUMAR S, CHO J H, PARK J, et al. Advances in diesel-alcohol blends and their effects on the performance and emissions of diesel engines [J]. Renewable and Sustainable Energy Reviews, 2013, 22: 46–72. DOI: https://doi.org/10.1016/j.rser.2013.01.017.

    Article  Google Scholar 

  24. SUH H K. Investigations of multiple injection strategies for the improvement of combustion and exhaust emissions characteristics in a low compression ratio (CR) engine [J]. Applied Energy, 2011, 88(12): 5013–5019. DOI: https://doi.org/10.1016/j.apenergy.2011.06.048.

    Article  Google Scholar 

  25. de la GARZA O A, MARTÍNEZ-MARTÍNEZ S, AVULAPATI M M, et al. Biofuels and its spray interactions under pilot-main injection strategy [J]. Energy, 2021, 219: 119464. DOI: https://doi.org/10.1016/j.energy.2020.119464.

    Article  Google Scholar 

  26. BRAGADESHWARAN A, KASIANANTHAM N, KAISAN M U, et al. Influence of injection timing and exhaust gas recirculation (EGR) rate on lemon peel oil-fuelled CI engine [J]. Environmental Science and Pollution Research International, 2019, 26(21): 21890–21904. DOI: https://doi.org/10.1007/s11356-019-05369-7.

    Article  Google Scholar 

  27. WANG Peng, TANG Xu-yang, SHI Lei, et al. Experimental investigation of the influences of Miller cycle combined with EGR on performance, energy and exergy characteristics of a four-stroke marine regulated two-stage turbocharged diesel engine [J]. Fuel, 2021, 300: 120940. DOI: https://doi.org/10.1016/j.fuel.2021.120940.

    Article  Google Scholar 

  28. KOBASHI Y, WANG Y, SHIBATA G, et al. Ignition control in a gasoline compression ignition engine with ozone addition combined with a two-stage direct-injection strategy [J]. Fuel, 2019, 249: 154–160. DOI: https://doi.org/10.1016/j.foel.2019.03.101.

    Article  Google Scholar 

  29. SUN Chun-hua, LIU Yu, QIAO Xin-qi, et al. Experimental study of effects of exhaust gas recirculation on combustion, performance, and emissions of DME-biodiesel fueled engine [J]. Energy, 2020, 197: 117233. DOI: https://doi.org/10.1016/j.energy.2020.117233.

    Article  Google Scholar 

  30. FUYUTO T, NAGATA M, HOTTA Y, et al. In-cylinder stratification of external exhaust gas recirculation for controlling diesel combustion [J]. International Journal of Engine Research, 2010, 11(1): 1–15. DOI: https://doi.org/10.1243/14680874jer04809.

    Article  Google Scholar 

  31. KAISER S A, SCHILD M, SCHULZ C. Thermal stratification in an internal combustion engine due to wall heat transfer measured by laser-induced fluorescence [J]. Proceedings of the Combustion Institute, 2013, 34(2): 2911–2919. DOI: https://doi.org/10.1016/j.proci.2012.05.059.

    Article  Google Scholar 

  32. LIU Hai-feng, ZHENG Zhao-lei, YAO Ming-fa, et al. Influence of temperature and mixture stratification on HCCI combustion using chemiluminescence images and CFD analysis [J]. Applied Thermal Engineering, 2012, 33–34: 135–143. DOI: https://doi.org/10.1016/j.applthermaleng.2011.09.026.

    Article  Google Scholar 

  33. ZHANG Meng, WANG Jin-hua, HUANG Zuo-hua, et al. Numerical study of effects of the intermediates and initial conditions on flame propagation in a real homogeneous charge compression ignition engine [J]. Thermal Science, 2014, 18(1): 79–87. DOI: https://doi.org/10.2298/tsci121225062z.

    Article  Google Scholar 

  34. TSUDA S, KOSAKA H, AIZAWA T. DE3-2: A study on effect of heterogeneity of oxygen concentration and temperature distributions in a combustion chamber on combustion and emissions of diesel engine (DE: Diesel engine combustion, general session papers) [J]. The Proceedings of the International Symposium on Diagnostics and Modeling of Combustion in Internal Combustion Engines, 2008, 2008(7): 189–196. DOI: https://doi.org/10.1299/jmsesdm.2008.7.189.

    Article  Google Scholar 

  35. CHOI S, PARK W, LEE S, et al. Methods for in-cylinder EGR stratification and its effects on combustion and emission characteristics in a diesel engine [J]. Energy, 2011, 36(12): 6948–6959. DOI: https://doi.org/10.1016/j.energy.2011.09.016.

    Article  Google Scholar 

  36. SHEN Zhao-jie, CUI Wen-zheng, LIU Zhong-chang, et al. Distribution evolution of intake and residual gas species during CO2 stratification combustion in diesel engine [J]. Fuel, 2016, 166: 427–435. DOI: https://doi.org/10.1016/j.fuel.2015.11.017.

    Article  Google Scholar 

  37. NORD K E, HAUPT D. Reducing the emission of particles from a diesel engine by adding an oxygenate to the fuel [J]. Environmental Science & Technology, 2005, 39(16): 6260–6265. DOI: https://doi.org/10.1021/es048085h.

    Article  Google Scholar 

  38. ZHANG Ya-hui, TAO Wen-cao, LI Zi-long, et al. Experimental studies on the combustion and particulate matter emission characteristics of biodiesel surrogate component/diesel [J]. Applied Thermal Engineering, 2018, 131: 565–575. DOI: https://doi.org/10.1016/j.applthermaleng.2017.12.045.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SUN Yi provided the concept and edited the draft of manuscript. SUN Wan-chen, GUO Liang and YAN Yu-ying provided the field test conditions. ZHANG Hao and LI Xiu-ling analyzed the results. SUN Yi and SUN Wan-chen conducted the literature review and wrote the first draft of the manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Wan-chen Sun  (孙万臣).

Additional information

Conflict of interest

SUN Yi, SUN Wan-chen, GUO Liang, YAN Yun-ying, ZHANG Hao, and LI Xiu-ling declare that they have no conflict of interest.

Foundation item: Projects(51476069, 51676084) supported by the National Natural Science Foundation of China; Project(2019C058-3) supported by the Jilin Provincial Industrial Innovation Special Guidance Fund Project, China; Project(20180101059JC) supported by the Jilin Provincial Science and Technology Development Plan Project, China; Project(2020C025-2) supported by the Jilin Provincial Specific Project of Industrial Technology Research & Development, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Sun, Wc., Guo, L. et al. Combustion and emission characteristics of diesel/n-butanol blends with split-injection and exhaust gas recirculation stratification. J. Cent. South Univ. 29, 2189–2200 (2022). https://doi.org/10.1007/s11771-022-5085-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5085-7

Key words

关键词

Navigation