Skip to main content
Log in

Design and optimization of exhaust gas aftertreatment system for a heavy-duty diesel engine

重型柴油机废气后处理系统的设计和优化

  • The 2nd World Congress on Internal Combustion Engines
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Diesel engines meeting the latest emission regulations must be equipped with exhaust gas aftertreatment system, including diesel oxidation catalysts (DOC), diesel particulate filters (DPF), and selective catalytic reduction (SCR). However, before the final integration of the aftertreatment system (DOC+DPF+SCR) and the diesel engine, a reasonable structural optimization of the catalytic converters and a large number of bench calibration tests must be completed, involving large costs and long development cycles. The design and optimization of the exhaust gas aftertreatment system for a heavy-duty diesel engine was proposed in this paper. Firstly, one-dimensional (1D) and three-dimensional (3D) computational models of the exhaust gas aftertreatment system accounting for the structural parameters of the catalytic converters were established. Then based on the calibrated models, the effects of the converter’s structural parameters on their main performance indicators, including the conversion of various exhaust pollutants and the temperatures and pressure drops of the converters, were studied. Finally, the optimal design scheme was obtained. The temperature distribution of the solid substrates and pressure distributions of the catalytic converters were studied based on the 3D model. The method proposed in this paper has guiding significance for the optimization of diesel engine aftertreatment systems.

摘要

符合最新排放标准的柴油机必须配备废气后处理系统,包括柴油机氧化催化剂(DOC)、柴油机微粒过滤器(DPF)和选择性催化还原(SCR)体系。然而,在后处理系统(DOC+DPF+SCR)与柴油机最终集成之前,必须完成对催化转化器的合理结构优化和大量的台架标定试验,涉及的成本大、开发周期长。为此,本文对重型柴油机尾气后处理系统进行设计和优化。首先,建立废气后处理系统的一维(1D)和三维(3D)计算模型,并考虑了催化转化器的结构参数。然后,在标定模型的基础上,研究了催化器的结构参数对其主要性能指标的影响,包括各种废气污染物的转化以及催化器的温度和压降。最后,得到了最佳设计方案。在三维模型的基础上研究了固体基片的温度分布和催化转化器的压力分布。本文提出的方法对柴油机后处理系统的优化具有一定的指导意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHE MAT S, IDROAS M Y, HAMID M F, et al. Performance and emissions of straight vegetable oils and its blends as a fuel in diesel engine: A review [J]. Renewable and Sustainable Energy Reviews, 2018, 82: 808–823. DOI: https://doi.org/10.1016/j.rser.2017.09.080.

    Article  Google Scholar 

  2. LIU Jun-heng, SUN Ping, HUANG He, et al. Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends [J]. Applied Energy, 2017, 202: 527–536. DOI: https://doi.org/10.1016/j.apenergy.2017.05.166.

    Article  Google Scholar 

  3. TAN Pi-qiang, LI Yuan, SHEN Han-yan. Effect of lubricant sulfur on the morphology and elemental composition of diesel exhaust particles [J]. Journal of Environmental Sciences, 2017, 55: 354–362. DOI: https://doi.org/10.1016/j.jes.2017.01.014.

    Article  Google Scholar 

  4. LEE J, THEIS J R, KYRIAKIDOU E A. Vehicle emissions trapping materials: Successes, challenges, and the path forward [J]. Applied Catalysis B: Environmental, 2019, 243: 397–414. DOI: https://doi.org/10.1016/j.apcatb.2018.10.069.

    Article  Google Scholar 

  5. MARTIN N R, KELLEY P, KLASKI R, et al. Characterization and comparison of oxidative potential of real-world biodiesel and petroleum diesel particulate matter emitted from a nonroad heavy duty diesel engine [J]. Science of the Total Environment, 2019, 655: 908–914. DOI: https://doi.org/10.1016/j.scitotenv.2018.11.292.

    Article  Google Scholar 

  6. TAN Pi-qiang, CAO Chen-yang, HU Zhi-yuan, et al. A phenomenological model for particle number and size distributions of a diesel engine with a diesel oxidation catalyst [J]. Science of the Total Environment, 2019, 672: 536–550. DOI: https://doi.org/10.1016/j.scitotenv.2019.03.476.

    Article  Google Scholar 

  7. MYUNG C L, KO A, PARK S. Review on characterization of nano-particle emissions and PM morphology from internal combustion engines: Part 1 [J]. International Journal of Automotive Technology, 2014, 15(2): 203–218. DOI: https://doi.org/10.1007/s12239-014-0022-x.

    Article  Google Scholar 

  8. LESKOVJAN M, KOČÍ P, MAUNULA T. Simulation of diesel exhaust aftertreatment system DOC-pipe-SCR: The effects of Pt loading, PtOx formation and pipe configuration on the deNOx performance [J]. Chemical Engineering Science, 2018, 189: 179–190. DOI: https://doi.org/10.1016/j.ces.2018.05.031.

    Article  Google Scholar 

  9. REN Shuo-jin, WANG Bo-yuan, ZHANG Jun, et al. Application of dual-fuel combustion over the full operating map in a heavy-duty multi-cylinder engine with reduced compression ratio and diesel oxidation catalyst [J]. Energy Conversion and Management, 2018, 166: 1–12. DOI: https://doi.org/10.1016/j.enconman.2018.04.011.

    Article  Google Scholar 

  10. KANG S B, HAZLETT M, BALAKOTAIAH V, et al. Effect of Pt: Pd ratio on CO and hydrocarbon oxidation [J]. Applied Catalysis B: Environmental, 2018, 223: 67–75. DOI: https://doi.org/10.1016/j.apcatb.2017.05.057.

    Article  Google Scholar 

  11. CORRO G, FLORES A, PACHECO-AGUIRRE F, et al. Biodiesel and fossil-fuel diesel soot oxidation activities of Ag/CeO2 catalyst [J]. Fuel, 2019, 250: 17–26. DOI: https://doi.org/10.1016/j.fuel.2019.03.043.

    Article  Google Scholar 

  12. DAVIES C, THOMPSON K, COOPER A, et al. Simultaneous removal of NOx and soot particulate from diesel exhaust by in situ catalytic generation and utilisation of N2O [J]. Applied Catalysis B: Environmental, 2018, 239: 10–15. DOI: https://doi.org/10.1016/j.apcatb.2018.07.072.

    Article  Google Scholar 

  13. VANDER WAL R L, YEZERETS A, CURRIER N W, et al. HRTEM study of diesel soot collected from diesel particulate filters [J]. Carbon, 2007, 45(1): 70–77. DOI: https://doi.org/10.1016/j.carbon.2006.08.005.

    Article  Google Scholar 

  14. STAMATELLOU A M, STAMATELOS A. Overview of diesel particulate filter systems sizing approaches [J]. Applied Thermal Engineering, 2017, 121: 537–546. DOI: https://doi.org/10.1016/j.applthermaleng.2017.04.096.

    Article  Google Scholar 

  15. DE-LA-TORRE U, PEREDA-AYO B, MOLINER M, et al. Cu-zeolite catalysts for NOx removal by selective catalytic reduction with NH3 and coupled to NO storage/reduction monolith in diesel engine exhaust aftertreatment systems [J]. Applied Catalysis B: Environmental, 2016, 187: 419–427. DOI: https://doi.org/10.1016/j.apcatb.2016.01.020.

    Article  Google Scholar 

  16. TAN Pi-qiang, WANG Shi-yan, HU Zhi-yuan, et al. Durability of V2O5−WO3/TiO2 selective catalytic reduction catalysts for heavy-duty diesel engines using B20 blend fuel [J]. Energy, 2019, 179: 383–391. DOI: https://doi.org/10.1016/j.energy.2019.04.149.

    Article  Google Scholar 

  17. KU K W, HONG J G, PARK C W, et al. Effects of various factors on the conversion efficiency of urea solution in a urea selective catalytic reduction system [J]. Energy & Fuels, 2014, 28(9): 5959–5967. DOI: https://doi.org/10.1021/ef501358j.

    Article  Google Scholar 

  18. CALISKAN H, MORI K. Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems [J]. Energy, 2017, 128: 128–144. DOI: https://doi.org/10.1016/j.energy.2017.04.014.

    Article  Google Scholar 

  19. YAMAMOTO K, SAKAI T. Simulation of continuously regenerating trap with catalyzed DPF [J]. Catalysis Today, 2015, 242: 357–362. DOI: https://doi.org/10.1016/j.cattod.2014.07.022.

    Article  Google Scholar 

  20. ZHANG Jun, WONG V W, SHUAI Shi-jin, et al. Quantitative estimation of the impact of ash accumulation on diesel particulate filter related fuel penalty for a typical modern on-road heavy-duty diesel engine [J]. Applied Energy, 2018, 229: 1010–1023. DOI: https://doi.org/10.1016/j.apenergy.2018.08.071.

    Article  Google Scholar 

  21. CHEN K, MARTIROSYAN K S, LUSS D. Transient temperature rise during regeneration of diesel particulate filters [J]. Chemical Engineering Journal, 2011, 176–177: 144–150. DOI: https://doi.org/10.1016/j.cej.2011.02.079.

    Article  Google Scholar 

  22. GILLOT S, DACQUIN J P, DUJARDIN C High intrinsic cataly-tic activity of CeVO4-based catalysts for ammonia-SCR: influence of pH during hydrothermal synthesis [J]. Top Catal, 2016, 59: 987–995. 10.1007%2Fs11244-016-0579-x.

    Article  Google Scholar 

  23. QIU Tao, LI Xu-chu, LEI Yan, et al. The prediction of fuel injection quality using a NOx sensor for the on-board diagnosis of heavy-duty diesel engines with SCR systems [J]. Fuel, 2015, 141: 192–199. DOI: https://doi.org/10.1016/j.fuel.2014.10.015.

    Article  Google Scholar 

  24. SHARMA S, FADNAVIS J, KHOT A. Empirical model to predict melt volume for different range of diesel exhaust fluid tank volumes used in selective catalytic reduction systems [J]. Applied Thermal Engineering, 2018, 129: 916–926. DOI: https://doi.org/10.1016/j.applthermaleng.2017.10.052.

    Article  Google Scholar 

  25. SHARMA H, MHADESHWAR A. A detailed microkinetic model for diesel engine emissions oxidation on platinum based diesel oxidation catalysts (DOC) [J]. Applied Catalysis B: Environmental, 2012, 127: 190–204. DOI: https://doi.org/10.1016/j.apcatb.2012.08.021.

    Article  Google Scholar 

  26. E. Jia-qiang, ZUO Wei, GAO Jun-xu, et al. Effect analysis on pressure drop of the continuous regeneration-diesel particulate filter based on NO2 assisted regeneration [J]. Applied Thermal Engineering, 2016, 100: 356–366. DOI: https://doi.org/10.1016/j.applthermaleng.2016.02.031.

    Article  Google Scholar 

  27. BAI Shu-zhan, TANG Jiao, WANG Gui-hua, et al. Soot loading estimation model and passive regeneration characteristics of DPF system for heavy-duty engine [J]. Applied Thermal Engineering, 2016, 100: 1292–1298. DOI: https://doi.org/10.1016/j.applthermaleng.2016.02.055.

    Article  Google Scholar 

  28. QU Da-wei, LI Jun, LIU Yu. Research on particulate filter simulation and regeneration control strategy [J]. Mechanical Systems and Signal Processing, 2017, 87: 214–226. DOI: https://doi.org/10.1016/j.ymssp.2016.05.039.

    Article  Google Scholar 

  29. TORREGROSA A J, SERRANO J R, PIQUERAS P, et al. Experimental and computational approach to the transient behaviour of wall-flow diesel particulate filters [J]. Energy, 2017, 119: 887–900. DOI: https://doi.org/10.1016/j.energy.2016.11.051.

    Article  Google Scholar 

  30. ZHANG Bin, E Jia-qiang, GONG Jin-ke, et al. Multidisciplinary design optimization of the diesel particulate filter in the composite regeneration process [J]. Applied Energy, 2016, 181: 14–28. DOI: https://doi.org/10.1016/j.apenergy.2016.08.051.

    Article  Google Scholar 

  31. FAHAMI A R, NOVA I, TRONCONI E. A kinetic modeling study of NO oxidation over a commercial Cu-CHA SCR catalyst for diesel exhaust aftertreatment [J]. Catalysis Today, 2017, 297: 10–16. DOI: https://doi.org/10.1016/j.cattod.2017.05.098.

    Article  Google Scholar 

  32. ÅBERG A, WIDD A, ABILDSKOV J, et al. Parameter estimation and analysis of an automotive heavy-duty SCR catalyst model [J]. Chemical Engineering Science, 2017, 161: 167–177. DOI: https://doi.org/10.1016/j.ces.2016.12.024.

    Article  Google Scholar 

  33. BALETA J, MARTINJAK M, VUJANOVIĆ M, et al. Numerical analysis of ammonia homogenization for selective catalytic reduction application [J]. Journal of Environmental Management, 2017, 203: 1047–1061. DOI: https://doi.org/10.1016/j.jenvman.2017.04.103.

    Article  Google Scholar 

  34. WEI Li, YAN Fu-wu, HU Jie, et al. Nox conversion efficiency optimization based on NSGA-II and state-feedback nonlinear model predictive control of selective catalytic reduction system in diesel engine [J]. Applied Energy, 2017, 206: 959–971. DOI: https://doi.org/10.1016/j.apenergy.2017.08.223.

    Article  Google Scholar 

  35. DE-LA-TORRE U, PEREDA-AYO B, GUTIÉRREZ-ORTIZ M A, et al. Steady-state NH3-SCR global model and kinetic parameter estimation for NOx removal in diesel engine exhaust aftertreatment with Cu/chabazite [J]. Catalysis Today, 2017, 296: 95–104. DOI: https://doi.org/10.1016/j.cattod.2017.04.011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TAN Pi-qiang provided the concept and edited the draft of manuscript. YAO Chao-jie conducted the literature review and wrote the first draft of the manuscript. WANG De-yuan, ZHU Lei, HU Zhi-yuan, and LOU Di-ming edited the draft of manuscript. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Pi-qiang Tan  (谭丕强).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Projects(2017YFC0211202, 2017YFC0211301) supported by the National Key R&D Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Pq., Yao, Cj., Wang, Dy. et al. Design and optimization of exhaust gas aftertreatment system for a heavy-duty diesel engine. J. Cent. South Univ. 29, 2127–2141 (2022). https://doi.org/10.1007/s11771-022-5081-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5081-y

Key words

关键词

Navigation