Skip to main content
Log in

An experimental study on RP-3 jet fuel injection on a common rail injection system

RP-3 航空煤油高压共轨喷射特性的实验研究

  • The 2nd World Congress on Internal Combustion Engines
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

RP-3 jet fuel could be an alternative fuel for diesel engines. In this study, the injection characteristics of RP-3 jet fuel under single and split injection strategies were investigated and compared with diesel fuel. The experimental results indicate that RP-3 jet fuel has slightly shorter injection delay time than diesel fuel, but this difference is negligible in actual engine operations. Further, although the lower density and viscosity of RP-3 jet fuel lead to higher volumetric injection rates and cycle-based injection quantities, the cycle-based injection mass and the mass injection rates at the stable injection stage of RP-3 jet fuel are close to or slightly lower than those of diesel fuel. Based on these experimental observations, it could be concluded that fuel physical properties are the secondary factor influencing the injection characteristics in both single and split injection strategies, as RP-3 jet fuel and diesel fuel are taken for comparison.

摘要

RP-3航空煤油可以作为替代燃料应用于柴油发动机。本文研究了RP-3航空煤油在单次喷射和多次喷射策略下的喷射特性,并与柴油燃料的喷射特性进行对比。实验结果表明,尽管RP-3 航空煤油的喷射延迟时间比柴油短,但该差异在实际发动机运行工况中可以忽略。此外,虽然RP-3 航空煤油较低的密度和黏度导致其更高的体积喷射速率和循环喷射量,然而,RP-3 航空煤油的循环质量喷射量和质量喷射速率接近或略低于柴油。基于两种燃料的喷射特性对比,可以发现燃料的物理性质在单次喷射和多次喷射策略中是影响燃料喷射特性的次要因素。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BOEHNER W, HUMMEL K. Common rail injection system for commercial diesel vehicles [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1997. DOI: https://doi.org/10.4271/970345.

    Book  Google Scholar 

  2. ZHANG Qing-hui, HAO Zhi-yong, ZHENG Xu, et al. Mechanism and optimization of fuel injection parameters on combustion noise of DI diesel engine [J]. Journal of Central South University, 2016, 23(2): 379–393. DOI: https://doi.org/10.1007/s11771-016-3083-3.

    Article  Google Scholar 

  3. CATANIA A E, ALESSANDRO F, MICHELE M, et al. Experimental investigation of dynamics effects on multiple-injection common rail system performance [J]. Journal of Engineering for Gas Turbines and Power, 2008, 130(3): 32806. DOI: https://doi.org/10.1115/1.2835353.

    Article  Google Scholar 

  4. HERFATMANESH M R, PENG Zhi-jun, IHRACSKA A, et al. Characteristics of pressure wave in common rail fuel injection system of high-speed direct injection diesel engines [J]. Advances in Mechanical Engineering, 2016, 8(5): 168781401664824. DOI: https://doi.org/10.1177/1687814016648246.

    Article  Google Scholar 

  5. GORDON A S, AUSTIN T C. Alternative fuels for mobile transport [J]. Progress in Energy and Combustion Science, 1992, 18(6): 493–512. DOI: https://doi.org/10.1016/0360-1285(92)90036-Z.

    Article  Google Scholar 

  6. LIANG Xin, DUAN Yao-zong, FAN Yun-chu, et al. Influences of C5 esters addition on anti-knock and autoignition tendency of a gasoline surrogate fuel [J]. International Journal of Engine Research, 2021. DOI: https://doi.org/10.1177/14680874211030898.

  7. FAN Yun-chu, DUAN Yao-zong, HAN Dong, et al. Influences of isomeric butanol addition on anti-knock tendency of primary reference fuel and toluene primary reference fuel gasoline surrogates [J]. International Journal of Engine Research, 2021, 22(1): 39–49. DOI: https://doi.org/10.1177/1468087419850704.

    Article  Google Scholar 

  8. GAO Jin, LI Fa-she, ZHANG Xiao-hui, et al. Effect of ethanol addition on flame characteristics of waste oil biodiesel [J]. Journal of Central South University, 2018, 25(5): 1043–1051. DOI: https://doi.org/10.1007/s11771-018-3804-x.

    Article  Google Scholar 

  9. HAN Dong, FAN Yun-chu, SUN Zhe, et al. Combustion and emissions of isomeric butanol/gasoline surrogates blends on an optical GDI engine [J]. Fuel, 2020, 272: 117690. DOI: https://doi.org/10.1016/j.fuel.2020.117690.

    Article  Google Scholar 

  10. WANG Meng, DEWIL R, MANIATIS K, et al. Biomass-derived aviation fuels: Challenges and perspective [J]. Progress in Energy and Combustion Science, 2019, 74: 31–49. DOI: https://doi.org/10.1016/j.pecs.2019.04.004.

    Article  Google Scholar 

  11. ZHANG Hong-lei, DING Jin-cheng, ZHAO Zeng-dian. Esterification of different FFAs with methanol by CERP/PES hybrid catalytic membrane for biodiesel production [J]. Journal of Central South University, 2012, 19(10): 2895–2900. DOI: https://doi.org/10.1007/s11771-012-1356-z.

    Article  Google Scholar 

  12. ASHOK B, NANTHAGOPAL K, SARAVANAN B, et al. A novel study on the effect lemon peel oil as a fuel in CRDI engine at various injection strategies [J]. Energy Conversion and Management, 2018, 172: 517–528. DOI: https://doi.org/10.1016/j.enconman.2018.07.037.

    Article  Google Scholar 

  13. MOON S, TSUJIMURA T, GAO Yuan, et al. Biodiesel effects on transient needle motion and near-exit flow characteristics of a high-pressure diesel injector [J]. International Journal of Engine Research, 2014, 15(4): 504–518. DOI: https://doi.org/10.1177/1468087413497951.

    Article  Google Scholar 

  14. HAN Dong, DUAN Yao-zong, WANG Chun-hai, et al. Experimental study on injection characteristics of fatty acid esters on a diesel engine common rail system [J]. Fuel, 2014, 123: 19–25. DOI: https://doi.org/10.1016/j.fuel.2014.01.048.

    Article  Google Scholar 

  15. HAN Dong, DUAN Yao-zong, WANG Chun-hai, et al. Experimental study of the two-stage injection process of fatty acid esters on a common rail injection system [J]. Fuel, 2016, 163: 214–222. DOI: https://doi.org/10.1016/j.fuel.2015.09.066.

    Article  Google Scholar 

  16. PARK S H, KIM H J, SUH H K, et al. A study on the fuel injection and atomization characteristics of soybean oil methyl ester (SME) [J]. International Journal of Heat and Fluid Flow, 2009, 30(1): 108–116. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2008.11.002.

    Article  Google Scholar 

  17. SUH H K, LEE C S. A review on atomization and exhaust emissions of a biodiesel-fueled compression ignition engine [J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1601–1620. DOI: https://doi.org/10.1016/j.rser.2015.12.329.

    Article  Google Scholar 

  18. BOUDY F, SEERS P. Impact of physical properties of biodiesel on the injection process in a common-rail direct injection system [J]. Energy Conversion and Management, 2009, 50(12): 2905–2912. DOI: https://doi.org/10.1016/j.enconman.2009.07.005.

    Article  Google Scholar 

  19. HAN Dong, DUAN Yao-zong, WANG Chun-hai, et al. Experimental study of the two-stage injection process of fatty acid esters on a common rail injection system [J]. Fuel, 2016, 163: 214–222. DOI: https://doi.org/10.1016/j.fuel.2015.09.066.

    Article  Google Scholar 

  20. ABBASS M K, ANDREWS G E, ASADI-AGHDAM H R, et al. Pyrosynthesis of PAH in a diesel engine operated on kerosene [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1989. DOI: https://doi.org/10.4271/890827.

    Book  Google Scholar 

  21. ZHANG Chi, HUI Xin, LIN Yu-zhen, et al. Recent development in studies of alternative jet fuel combustion: Progress, challenges, and opportunities [J]. Renewable and Sustainable Energy Reviews, 2016, 54: 120–138. DOI: https://doi.org/10.1016/j.rser.2015.09.056.

    Article  Google Scholar 

  22. FERNANDES G, FUSCHETTO J, FILIPI Z, et al. Impact of military JP-8 fuel on heavy-duty diesel engine performance and emissions [J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2007, 221(8): 957–970. DOI: https://doi.org/10.1243/09544070jauto211.

    Google Scholar 

  23. KANG D, KIM D, KALASKAR V, et al. Experimental characterization of jet fuels under engine relevant conditions-Part 1: Effect of chemical composition on autoignition of conventional and alternative jet fuels [J]. Fuel, 2019, 239: 1388–1404. DOI: https://doi.org/10.1016/j.fuel.2018.10.005.

    Article  Google Scholar 

  24. CHEN Zheng, QIN Tao, HE Ting-pu, et al. Effect of equivalence ratio on diesel direct injection spark ignition combustion [J]. Journal of Central South University, 2020, 27(8): 2338–2352. DOI: https://doi.org/10.1007/s11771-020-4453-4.

    Article  Google Scholar 

  25. ZHAO Tong-bin, REN Zhe, YANG Kai, et al. Combustion and emissions of RP-3 jet fuel and diesel fuel in single-cylinder diesel engine [J]. Frontiers in Energy, 2021: 1–14. DOI: https://doi.org/10.1007/s11708-021-0787-3

  26. DUAN Yao-zong, LIU Wang, HUANG Zhen, et al. An experimental study on spray auto-ignition of RP-3 jet fuel and its surrogates [J]. Frontiers in Energy, 2021, 15(2): 396–404. DOI: https://doi.org/10.1007/s11708-020-0715-y.

    Article  Google Scholar 

  27. REN Zhe, LIU Wang, HUANG Zhen, et al. Spray autoignition behaviors of diesel and jet fuel at reduced oxygen environments [J]. Combustion Science and Technology, 2022, 194(3): 574–588. DOI: https://doi.org/10.1080/00102202.2020.1774567.

    Article  Google Scholar 

  28. ZHANG Chang-hua, LI Bin, RAO Fan, et al. A shock tube study of the autoignition characteristics of RP-3 jet fuel [J]. Proceedings of the Combustion Institute, 2015, 35(3): 3151–3158. DOI: https://doi.org/10.1016/j.proci.2014.05.017.

    Article  Google Scholar 

  29. YANG Zhi-yuan, ZENG Ping, WANG Bi-yao, et al. Ignition characteristics of an alternative kerosene from direct coal liquefaction and its blends with conventional RP-3 jet fuel [J]. Fuel, 2021, 291: 120258. DOI: https://doi.org/10.1016/j.fuel.2021.120258.

    Article  Google Scholar 

  30. MAO Ye-bing, YU Liang, WU Zhi-yong, et al. Experimental and kinetic modeling study of ignition characteristics of RP-3 kerosene over low-to-high temperature ranges in a heated rapid compression machine and a heated shock tube [J]. Combustion and Flame, 2019, 203: 157–169. DOI: https://doi.org/10.1016/j.combustflame.2019.02.015.

    Article  Google Scholar 

  31. LIANG Jin-hu, LI Xiao-liang, LI Fei, et al. Experimental study on sooting characteristics of a direct coal liquefaction derived jet fuel and its blend with RP-3 jet fuel [J]. Fuel, 2022, 307: 121846. DOI: https://doi.org/10.1016/j.fuel.2021.121846.

    Article  Google Scholar 

  32. LIU Wang, LIANG Xin, LIN Bai-yang, et al. A comparative study on soot particle size distributions in premixed flames of RP-3 jet fuel and its surrogates [J]. Fuel, 2020, 259: 116222. DOI: https://doi.org/10.1016/j.fuel.2019.116222.

    Article  Google Scholar 

  33. LIU Wang, LIANG Xin, LI Ang, et al. Soot particle size distributions in premixed flames of RP-3 jet fuel and its distillates [J]. Fuel, 2020, 267: 117244. DOI: https://doi.org/10.1016/j.fuel.2020.117244.

    Article  Google Scholar 

  34. DUAN Yao-zong, HAN Dong, LI Peng-fei, et al. Experimental study on injection and macroscopic spray characteristics of ethyl oleate, jet fuel, and their blend on a diesel engine common rail system [J]. Atomization and Sprays, 2015, 25(9): 777–793. DOI: https://doi.org/10.1615/atomizspr.2015011145.

    Article  Google Scholar 

  35. CHEN Long-fei, DING Shi-run, LIU Hao-ye, et al. Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine [J]. Applied Energy, 2017, 203: 91–100. DOI: https://doi.org/10.1016/j.apenergy.2017.06.036.

    Article  Google Scholar 

  36. HAN Dong, ZHAI Jia-qi, DUAN Yao-zong, et al. Nozzle effects on the injection characteristics of diesel and gasoline blends on a common rail system [J]. Energy, 2018, 153: 223–230. DOI: https://doi.org/10.1016/j.energy.2018.04.039.

    Article  Google Scholar 

  37. HAN Dong, WANG Chun-hai, DUAN Yao-zong, et al. An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system [J]. Energy, 2014, 75: 513–519. DOI: https://doi.org/10.1016/j.energy.2014.08.006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZHAO Tong-bin: Data curation, formal analysis, investigation, writing original draft; WU Yi-sheng: Data curation, investigation, writing original draft; DUAN Yao-zong: Formal analysis, investigation, supervision, writing, reviewing & editing; HUANG Zhen: Funding acquisition, resources; HAN Dong: Conceptualization, funding acquisition, methodology, project administration, resources, supervision, writing, reviewing & editing.

Corresponding author

Correspondence to Dong Han  (韩东).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Project(52022058) supported by the National Natural Science Foundation of China; Project(19160745400) supported by the Shanghai Science and Technology Committee, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Tb., Wu, Ys., Duan, Yz. et al. An experimental study on RP-3 jet fuel injection on a common rail injection system. J. Cent. South Univ. 29, 2179–2188 (2022). https://doi.org/10.1007/s11771-022-5079-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5079-5

Key words

关键词

Navigation