Skip to main content
Log in

Can hypobaric hypoxia affect human thermal comfort? An experimental study in Tibet, China

低压缺氧环境是否会影响人体热舒适?—基于西藏实验结果分析

  • Building Thermal Environment and Energy Conservation
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Hypobaric hypoxia is the main environmental feature of the Tibetan plateau which would influence the efficiency of human metabolic heat production and the ability of thermal regulation. In order to understand the influence of the hypoxic environment on the plateau on the thermal comfort of short-term sojourners in Tibet, China, oxygen generators were used to create oxygen-enriched environments, and physiological and psychological reactions of subjects were compared under different oxygen partial pressures (\({p_{{{\rm{O}}_2}}}\)) and air temperatures (ta). The results showed that subjects’ thermal sensation, thermal comfort and mean skin temperature decreased with a decrease in the oxygen partial pressure. When ta=17 °C, the influence of oxygen partial pressure was more pronounced, compared to \({p_{{{\rm{O}}_2}}} = 16.4\,\,{\rm{kPa}}\), the thermal sensation of subjects under \({p_{{{\rm{O}}_2}}} = 13.7\,\,{\rm{kPa}}\) decreased by 33%. The rate of subjects feeling comfortable decreased by 25%, and the mean skin temperature decreased by 0.7 °C. The hypoxic environment of the plateau exacerbates human discomfort. Therefore, it is necessary to fully understand the actual thermal requirements of sojourners in Tibet, China. The results of this study would have implications for a better understanding of thermal comfort characteristics in the hypoxia environment in plateau.

摘要

低压缺氧是青藏高原的主要环境特征,低压缺氧环境可能影响人体代谢产热效率和热调节能力。为了解高原缺氧环境对短期入藏人群热舒适的影响,本实验利用制氧机营造富氧环境,对比受试者在不同氧分压(\({p_{{{\rm{O}}_2}}}\))和空气温度(ta)下的生理和心理反应。结果表明,受试者热感觉、热舒适和皮肤温度随着氧分压的降低而降低。对比HOE(\({p_{{{\rm{O}}_2}}} = 16.4\,\,{\rm{kPa}}\))工况,当ta =17 ℃时氧分压对受试者的影响更为明显,在NOE(\({p_{{{\rm{O}}_2}}} = 13.7\,\,{\rm{kPa}}\))工况下受试者的热感觉降低了33%,受试者感觉舒适的比例下降25%,平均皮肤温度下降0.7 ℃。高原的缺氧环境加剧了人体的不适。因此,有必要充分了解入藏人群的实际热需求。本研究结果将有助于更好地理解在高原缺氧环境下的热舒适特征。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tibet Investigation Team. Tibet statistical yearbook 2018 [M]. Beijing: China Statistics Press, 2018. (in Chinese)

    Google Scholar 

  2. STREAM J O, GRISSOM C K. Update on high-altitude pulmonary edema: Pathogenesis, prevention, and treatment [J]. Wilderness & Environmental Medicine, 2008, 19(4): 293–303. DOI:https://doi.org/10.1580/07-WEME-REV-173.1.

    Article  Google Scholar 

  3. FAHIM M. Effect of hypoxic breathing on cutaneous temperature recovery in man [J]. International Journal of Biometeorology, 1992, 36(1): 5–9. DOI: https://doi.org/10.1007/BF01208727.

    Article  MathSciNet  Google Scholar 

  4. WOOD S C. Interactions between hypoxia and hypothermia [J]. Annual Review of Physiology, 1991, 53: 71–85. DOI: https://doi.org/10.1146/annurev.ph.53.030191.000443.

    Article  Google Scholar 

  5. GORDON C J. The role of behavioral thermoregulation as a thermoeffector during prolonged hypoxia in the rat [J]. Journal of Thermal Biology, 1997, 22(4–5): 315–324. DOI: https://doi.org/10.1016/S0306-4565(97)00028-4.

    Article  Google Scholar 

  6. CIUHA U, EIKEN O, MEKJAVIC I B. Effects of normobaric hypoxic bed rest on the thermal comfort zone [J]. Journal of Thermal Biology, 2015, 49–50: 39–46. DOI: https://doi.org/10.1016/j.jtherbio.2015.02.001.

    Article  Google Scholar 

  7. TATTERSALL G J, MILSOM W K. Hypoxia reduces the hypothalamic thermogenic threshold and thermosensitivity [J]. The Journal of Physiology, 2009, 587(21): 5259–5274. DOI: https://doi.org/10.1113/jphysiol.2009.175828.

    Article  Google Scholar 

  8. KOTTKE F J, PHALEN J S. Effect of hypoxia upon temperature regulation of mice, dogs, and man [J]. The American Journal of Physiology, 1948, 153(1): 10–15. DOI: https://doi.org/10.1152/ajplegacy.1948.153.1.10.

    Article  Google Scholar 

  9. ZHANG Wei-hua, KANG Long-li. The importance and research status of altitude acclimatization [J]. Foreign Medical Science Section of Medgeography, 2018, 39(2): 108–112. DOI: https://doi.org/10.3969/j.issn.1001-8883.2018.02.005. (in Chinese)

    MathSciNet  Google Scholar 

  10. SAVOUREY G, GUINET A, BESNARD Y, et al. General and local cold responses in humans after 2 weeks at high altitude [J]. European Journal of Applied Physiology and Occupational Physiology, 1997, 75(1): 28–33. DOI: https://doi.org/10.1007/s004210050122.

    Article  Google Scholar 

  11. COGO A, LEGNANI D, ALLEGRA L. Respiratory function at different altitudes [J]. Respiration; International Review of Thoracic Diseases, 1997, 64(6): 416–421. DOI: https://doi.org/10.1159/000196717.

    Article  Google Scholar 

  12. WOOD S, NORBOO T, LILLY M, et al. Cardiopulmonary function in high altitude residents of Ladakh [J]. High Altitude Medicine & Biology, 2003, 4(4): 445–454. DOI: https://doi.org/10.1089/152702903322616191.

    Article  Google Scholar 

  13. FUKAZAWA T, TOCHIHARA Y, TAKAHARA Y. Different impacts of normobaric/hypobaric hypoxia on physiological and subjective responses at a cold environment [J]. Journal of the Human-Environment System, 2013, 16(1): 11–19. DOI: https://doi.org/10.1618/jhes.16.011.

    Article  Google Scholar 

  14. KERAMIDAS M E, KÖLEGÅRD R, EIKEN O. Hypoxia gradually augments metabolic and thermoperceptual responsiveness to repeated whole-body cold stress in humans [J]. Experimental Physiology, 2020, 105(12): 2123–2140. DOI: https://doi.org/10.1113/EP089070.

    Article  Google Scholar 

  15. YAMAGUCHI K, KASAI N, HAYASHI N, et al. Acute performance and physiological responses to repeated-sprint exercise in a combined hot and hypoxic environment [J]. Physiological Reports, 2020, 8(12): e14466. DOI: https://doi.org/10.14814/phy2.14466.

    Article  Google Scholar 

  16. GJB 4301 — 2002. Indexes and evaluation of high altitude acclimatization [S]. (in Chinese)

  17. XING Jun-li, GE Xin-bin. Study on adaptation of the children of staff and cadres sent to support Tibet [J]. Journal of Research on Education for Ethnic Minorities, 2020, 31(1): 71–77. DOI: https://doi.org/10.15946/j.cnki.1001-7178.2020.01.009. (in Chinese)

    Google Scholar 

  18. GASIM G I, MUSA I R, ABDIEN M T, et al. Accuracy of tympanic temperature measurement using an infrared tympanic membrane thermometer [J]. BMC Research Notes, 2013, 6: 194. DOI: https://doi.org/10.1186/1756-0500-6-194.

    Article  Google Scholar 

  19. CHILDS C, HARRISON R, HODKINSON C. Tympanic membrane temperature as a measure of core temperature [J]. Archives of Disease in Childhood, 1999, 80(3): 262–266. DOI: https://doi.org/10.1136/adc.80.3.262.

    Article  Google Scholar 

  20. ISO 10551. Ergonomics of the physical environment-Subjective judgement scales for assessing physical environments [S].

  21. ASHRAE handbook—1981 fundamentals [J]. Building Services Engineering Research & Technology, 1981, 2(4): 193. DOI: https://doi.org/10.1177/014362448100200409.

  22. GB/T 35414. Requirements of oxygen conditioning for indoor oxygen diffusion in plateau area [S]. (in Chinese)

  23. NFPA 99B. Standard for hypobaric facilities [S].

  24. LIU Ying-shu, ZHU Xian-qiang, YANG Xiong, et al. Study on fire safety of oxygen-enriched environment at low pressure in plateau [C]//Proceedings of the Symposium on the 10th Anniversary of the Qinghai-Tibet Railway Operation. Beijing: China Railway Publishing House, 2016: 140–146. (in Chinese)

    Google Scholar 

  25. GOTO T, TOFTUM J, de DEAR R, et al. Thermal sensation and thermophysiological responses to metabolic step-changes [J]. International Journal of Biometeorology, 2006, 50(5): 323–332. DOI: https://doi.org/10.1007/s00484-005-0016-5.

    Article  Google Scholar 

  26. NAGANO K, TAKAKI A, HIRAKAWA M, et al. Effects of ambient temperature steps on thermal comfort requirements [J]. International Journal of Biometeorology, 2005, 50(1): 33–39. DOI: https://doi.org/10.1007/s00484-005-0265-3.

    Article  Google Scholar 

  27. DU Xiu-yuan, LI Bai-zhan, LIU Hong, et al. The response of human thermal sensation and its prediction to temperature step-change (cool-neutral-cool) [J]. PLoS One, 2014, 9(8): e104320. DOI: https://doi.org/10.1371/journal.pone.0104320.

    Article  Google Scholar 

  28. ZHU Hao, YANG Ya-fu. Observation on the time of oxygen inhalation at low flow and the variation of blood oxygen saturation at high altitude [J]. Journal of High Altitude Medicine, 2006(2): 46–47. (in Chinese)

  29. DS/EN ISO 7726. Ergonomics of the thermal environment Instruments for measuring physical quantities [S].

  30. LIU Wei-wei, LIAN Zhi-wei, DENG Qi-hong, et al. Evaluation of calculation methods of mean skin temperature for use in thermal comfort study [J]. Building and Environment, 2011, 46(2): 47–488. DOI: https://doi.org/10.1016/j.buildenv.2010.08.011.

    Google Scholar 

  31. ASHRAE. ANSI/ASHRAE 55-2020. Thermal environment conditions for human occupancy [S].

  32. PORTH I, WHITE R, JAQUISH B, et al. Partial correlation analysis of transcriptomes helps detangle the growth and defense network in spruce [J]. New Phytologist, 2018, 218(4): 1349–1359. DOI: https://doi.org/10.1111/nph.15075.

    Article  Google Scholar 

  33. NG D K W. Grey system and grey relational model [J]. ACM SIGICE Bulletin, 1994, 20(2): 2–9. DOI: https://doi.org/10.1145/190690.190691.

    Article  Google Scholar 

  34. WU H H. A comparative study of using grey relational analysis in multiple attribute decision making problems [J]. Quality Engineering, 2002, 15(2): 209–217. DOI: https://doi.org/10.1081/QEN-120015853.

    Article  Google Scholar 

  35. SHAPIRO S S, FRANCIA R S. An approximate analysis of variance test for normality [J]. Journal of the American Statistical Association, 1972, 67(337): 215–216. DOI: https://doi.org/10.1080/01621459.1972.10481232.

    Article  Google Scholar 

  36. WANG Hai-ying, HU Song-tao, LIU Guo-dan, et al. Experimental study of human thermal sensation under hypobaric conditions in winter clothes [J]. Energy and Buildings, 2010, 42(11): 2044–2048. DOI: https://doi.org/10.1016/j.enbuild.2010.06.013.

    Article  Google Scholar 

  37. TONG Li, HU Song-tao, WANG Hai-ying, et al. Experimental study on variation law of human body heart rate and thermal sensation in low air pressure environment [J]. Building Science, 2014, 30(4): 42–44, 71. DOI: https://doi.org/10.13614/j.cnki.11-1962/tu.2014.04.009. (in Chinese)

    Google Scholar 

  38. YAN Hai-yan, LI Hong-rui, CHEN Jing, et al. Research on influences of plateau climate on thermal adaptation of human body [J]. Building Science, 2017, 33(8): 29–34. DOI: https://doi.org/10.13614/j.cnki.11-1962/tu.2017.08.05. (in Chinese)

    MathSciNet  Google Scholar 

  39. YANG Yong-lu. Research progress of thermoregulation neural pathways [J]. Journal of Medical Research, 2017, 46(1): 1–4. (in Chinese)

    Google Scholar 

  40. DAVRANCHE K, CASINI L, ARNAL P J, et al. Cognitive functions and cerebral oxygenation changes during acute and prolonged hypoxic exposure [J]. Physiology & Behavior, 2016, 164: 189–197. DOI: https://doi.org/10.1016/j.physbeh.2016.06.001.

    Article  Google Scholar 

  41. LIU Yan-feng, HUANG Lei, SONG Cong, et al. Effect of hypoxia on human cognitive ability and indoor oxygen environment demand for sojourners at high altitude [J]. Building and Environment, 2021, 194: 107678. DOI: https://doi.org/10.1016/j.buildenv.2021.107678.

    Article  Google Scholar 

  42. DJONGYANG N, TCHINDA R, NJOMO D. Thermal comfort: A review paper [J]. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2626–2640. DOI: https://doi.org/10.1016/j.rser.2010.07.040.

    Article  Google Scholar 

  43. WEST J B. Commuting to high altitude: Value of oxygen enrichment of room air [J]. High Altitude Medicine & Biology, 2002, 3(2): 223–235. DOI: https://doi.org/10.1089/15270290260131948.

    Article  Google Scholar 

  44. KUHT J, FARMERY A D. Body temperature and its regulation [J]. Anaesthesia & Intensive Care Medicine, 2014, 15(6): 273–278. DOI: https://doi.org/10.1016/j.mpaic.2014.03.013.

    Article  Google Scholar 

  45. BLATTEIS C M, LUTHERER L O. Effect of altitude exposure on thermoregulatory response of man to cold [J]. Journal of Applied Physiology, 1976, 41(6): 848–858. DOI: https://doi.org/10.1152/jappl.1976.41.6.848.

    Article  Google Scholar 

  46. MADDEN C J, MORRISON S F. Hypoxic activation of arterial chemoreceptors inhibits sympathetic outflow to brown adipose tissue in rats [J]. The Journal of Physiology, 2005, 566(2): 559–573. DOI: https://doi.org/10.1113/jphysiol.2005.086322.

    Article  Google Scholar 

  47. van OOIJEN A M J, van MARKEN LICHTENBELT W D, van STEENHOVEN A A, et al. Cold-induced heat production preceding shivering [J]. The British Journal of Nutrition, 2005, 93(3): 387–391. DOI: https://doi.org/10.1079/bjn20041362.

    Article  Google Scholar 

  48. JOHNSTON C E, WHITE M D, WU M, et al. Human temperature regulation during eucapnic hypoxia [C]//Sixth International Conference on Envir. Ergon, 1994: 25–30.

  49. WEST J B. Oxygen conditioning at high altitude [J]. High Altitude Medicine & Biology, 2015, 16(3): 173–174. DOI: https://doi.org/10.1089/ham.2015.29002.jbw.

    Article  Google Scholar 

  50. GAO Yu-qi. High altitude military medicine [M]. Chongqing: Chongqing Press, 2005. (in Chinese)

    Google Scholar 

  51. TAKEOKA M, YANAGIDAIRA Y, SAKAI A, et al. Effects of high altitudes on finger cooling test in Japanese and Tibetans at Qinghai plateau [J]. International Journal of Biometeorology, 1993, 37(1): 27–31. DOI: https://doi.org/10.1007/BF01212763.

    Article  Google Scholar 

  52. KERAMIDAS M E, KÖLEGÅRD R, MEKJAVIC I B, et al. Acute effects of normobaric hypoxia on hand—temperature responses during and after local cold stress [J]. High Altitude Medicine & Biology, 2014, 15(2): 183–191. DOI: https://doi.org/10.1089/ham.2013.1131.

    Article  Google Scholar 

  53. MASSEY H C, HOUSE J R, TIPTON M J. Cutaneous vascular responses of the hands and feet to cooling, rewarming, and hypoxia in humans [J]. Wilderness & Environmental Medicine, 2018, 29(1): 45–55. DOI: https://doi.org/10.1016/j.wem.2017.11.006.

    Article  Google Scholar 

  54. KOLLAI M. Responses in cutaneous vascular tone to transient hypoxia in man [J]. Journal of the Autonomic Nervous System, 1983, 9(2–3): 497–512. DOI:https://doi.org/10.1016/0165-1838(83)90009-7.

    Article  Google Scholar 

  55. XIONG Jing, LIAN Zhi-wei, ZHOU Xin, et al. Potential indicators for the effect of temperature steps on human health and thermal comfort [J]. Energy and Buildings, 2016, 113: 87–98. DOI: https://doi.org/10.1016/j.enbuild.2015.12.031.

    Article  Google Scholar 

  56. XIONG Jing, LIAN Zhi-wei, ZHANG Hui-bo. Physiological response to typical temperature step-changes in winter of China [J]. Energy and Buildings, 2017, 138: 687–694. DOI: https://doi.org/10.1016/j.enbuild.2016.12.060.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

DUAN Guan-nan wrote the initial draft of the manuscript; SONG Cong analyzed the measured data and edited the draft of manuscript; LIU Yan-feng provided the concept and edited the draft of manuscript; WANG Deng-jia edited the draft of manuscript; CAO Rui-xuan analyzed the measured data.

Corresponding author

Correspondence to Cong Song  (宋聪).

Additional information

Conflict of interest

DUAN Guan-nan, SONG Cong, LIU Yan-feng, WANG Deng-jia and CAO Rui-xuan declare that they have no conflict of interest.

Foundation item: Project(U20A20311) supported by the State Key Program of National Natural Science Foundation of China; Project (52008329) supported by the National Natural Science Foundation of China; Project(2018BSHYDZZ14) supported by the Postdoctoral Research Foundation of Shaanxi Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Gn., Song, C., Liu, Yf. et al. Can hypobaric hypoxia affect human thermal comfort? An experimental study in Tibet, China. J. Cent. South Univ. 29, 2388–2402 (2022). https://doi.org/10.1007/s11771-022-5070-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5070-1

Key words

关键词

Navigation