Skip to main content
Log in

CO2-diluted CH4-air premixed spherical flames with microwave-assisted spark ignition

CO2稀释条件下微波辅助点火对早期甲烷空气球形火焰的影响

  • The 2nd World Congress on Internal Combustion Engines
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The performance of microwave-assisted spark ignition (MAI) under exhaust gas recirculation conditions was explored with CO2-diluted CH4-air premixed spherical flames in a constant volume combustion chamber. The flame kernel radius at 5 ms after spark started was selected to evaluate the property of MAI for CO2 dilution ratio of 0–20% and equivalence ratio of 0.6–1.4 with 1 kHz microwave pulse repetition frequency under 0.2 MPa ambient pressure. The results showed that the addition of microwave induced some wrinkles on the flame surface and strongly deformed the flame. MAI expanded the limit of CO2 dilution ratio to 16% with an equivalence ratio of 0.75, in which case the spark only (SI) failed to ignite the mixture. With the CO2 dilution ratio increasing, the wrinkles induced by microwave pulses decreased apparently, and the enhancement value of MAI peaked at 4% CO2 dilution ratio. The effect of microwave was considered in two aspects, namely, reaction kinetics and thermal effect, which shows a “trade-off” as CO2 dilution ratio rose. With 8% volume of CO2 added, the flammable interval (equivalence ratio 0.6–1.2) of mixture in SI mode shrunk, and MAI can maintain a flammable interval consistency with the case that no CO2 was added.

摘要

在定容燃烧弹中利用甲烷空气球形火焰探索了微波辅助点火(MAI)技术在CO2稀释条件下的点火性能。通过对比环境压力0.2 MPa下点火后火焰核心半径以及形貌等特征,评估了MAI在CO2稀释比0∼20%以及当量比0.6∼1.4 范围内较火花点火(SI)模式的增强效果。试验结果表明,脉冲重复频率为1 kHz 的微波可以在火焰表面诱发褶皱并使火焰明显变形。在当量比0.75 的条件下,采用MAI模式将CO2稀释比极限拓展到了16%,而在此条件下SI 模式无法点燃混合气。随着CO2稀释比由0 增大到16%时,微波诱发的火褶皱愈发不明显,而微波对火焰半径的增量在CO2稀释比为4%时达到峰值。这被认为是随着CO2稀释比的增加,微波引起的反应动力学增强与热效应之间此消彼长共同作用的结果。8%的CO2稀释比明显缩小了SI 点火的可燃当量比范围,而MAI可以维持相同的点火当量比范围。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CATON J A. A comparison of lean operation and exhaust gas recirculation: Thermodynamic reasons for the increases of efficiency [C]//SAE Technical Paper Series. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013. DOI: https://doi.org/10.4271/2013-01-0266.

    Google Scholar 

  2. PADILLA R, ESCOFET-MARTIN D, PHAM T, et al. Structure and behavior of water-laden CH4/air counterflow diffusion flames [J]. Combustion and Flame, 2018, 196: 439–451. DOI: https://doi.org/10.1016/j.combustflame.2018.06.037.

    Article  Google Scholar 

  3. KIM Y, KAWAHARA N, TSUBOI K, et al. Combustion characteristics and NOx emissions of biogas fuels with various CO2 contents in a micro co-generation spark-ignition engine [J]. Applied Energy, 2016, 182: 539–547. DOI: https://doi.org/10.1016/j.apenergy.2016.08.152.

    Article  Google Scholar 

  4. DUAN Xiong-bo, DENG Bang-lin, LIU Yi-qun, et al. An experimental study the impact of the hydrogen enrichment on cycle-to-cycle variations of the large bore and lean burn natural gas spark-ignition engine [J]. Fuel, 2020, 282: 118868. DOI: https://doi.org/10.1016/j.fuel.2020.118868.

    Article  Google Scholar 

  5. MOROVATIYAN M, SHAHSAVAN M, AGUILAR J, et al. Effect of argon concentration on laminar burning velocity and flame speed of hydrogen mixtures in a constant volume combustion chamber [J]. Journal of Energy Resources Technology, 2021, 143(3): 032301–032312. DOI: https://doi.org/10.1115/1.4048019.

    Article  Google Scholar 

  6. SAPRA H, GODJEVAC M, de VOS P, et al. Hydrogen-natural gas combustion in a marine lean-burn SI engine: A comparitive analysis of Seiliger and double Wiebe function-based zero-dimensional modelling [J]. Energy Conversion and Management, 2020, 207: 112494. DOI: https://doi.org/10.1016/j.enconman.2020.112494.

    Article  Google Scholar 

  7. KIM T Y, PARK C, OH S, et al. The effects of stratified lean combustion and exhaust gas recirculation on combustion and emission characteristics of an LPG direct injection engine [J]. Energy, 2016, 115: 386–396. DOI: https://doi.org/10.1016/j.energy.2016.09.025.

    Article  Google Scholar 

  8. STARIKOVSKIY A, ALEKSANDROV N. Plasma-assisted ignition and combustion [J]. Progress in Energy and Combustion Science, 2013, 39(1): 61–110. DOI: https://doi.org/10.1016/j.pecs.2012.05.003.

    Article  Google Scholar 

  9. KUMAR P, YAMAKI Y, LEE J, et al. Effects of microwave radiation on laser induced plasma ignition of n-butane/air mixture under atmospheric conditions [J]. Proceedings of the Combustion Institute, 2021, 38(4): 6593–6603. DOI: https://doi.org/10.1016/j.proci.2020.06.294.

    Article  Google Scholar 

  10. PADHI U P, SINGH A P, JOARDER R. Experimental and numerical investigations of double pulse laser energy deposition in air [J]. International Journal of Heat and Fluid Flow, 2020, 82: 108563. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2020.108563.

    Article  Google Scholar 

  11. XU Cang-su, WANG Han-yu, ZHOU Kang-quan, et al. Laminar burning velocity of premixed ethanol — air mixtures with laser-induced spark ignition using the constant-volume method [J]. Energy & Fuels, 2019, 33(8): 7749–7758. DOI: https://doi.org/10.1021/acs.energyfuels.9b00731.

    Article  Google Scholar 

  12. IKEDA Y, NISHIYAMA A, KANEKO M. Microwave enhanced ignition process for fuel mixture at elevated pressure of 1 MPa [C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Orlando, Florida. Reston, Virigina: AIAA, 2009. DOI: https://doi.org/10.2514/6.2009-223.

    Google Scholar 

  13. IKEDA Y, NISHIYAMA A, KATANO H, et al. Research and development of microwave plasma combustion engine (part II: Engine performance of plasma combustion engine) [C]//SAE Technical Paper Series. Detroit: SAE International, 2009. DOI: https://doi.org/10.4271/2009-01-1049.

    Google Scholar 

  14. NISHIYAMA A, IKEDA Y, WACI Y, et al. Research and development of microwave plasma combustion engine, Part I: Concept of plasma combustion and plasma Generation Technique [C]//SAE Technical Paper Series. Detroit: SAE International, 2009. DOI: https://doi.org/10.4271/2009-01-1050.

    Google Scholar 

  15. RAPP V H, DEFILIPPO A, SAXENA S, et al. Extending lean operating limit and reducing emissions of methane spark-ignited engines using a microwave-assisted spark plug [J]. Journal of Combustion, 2012: 927081. DOI: https://doi.org/10.1155/2012/927081.

  16. WOLK B, DEFILIPPO A, CHEN J Y, et al. Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber [J]. Combustion and Flame, 2013, 160(7): 1225–1234. DOI: https://doi.org/10.1016/j.combustflame.2013.02.004.

    Article  Google Scholar 

  17. HWANG J, BAE C, PARK J, et al. Microwave-assisted plasma ignition in a constant volume combustion chamber [J]. Combustion and Flame, 2016, 167: 86–96. DOI: https://doi.org/10.1016/j.combustflame.2016.02.023.

    Article  Google Scholar 

  18. PADALA S, NISHIYAMA A, IKEDA Y. Flame size measurements of premixed propane-air mixtures ignited by microwave-enhanced plasma [J]. Proceedings of the Combustion Institute, 2017, 36(3): 4113–4119. DOI: https://doi.org/10.1016/j.proci.2016.06.168.

    Article  Google Scholar 

  19. BOZZA F, de BELLIS V, TEODOSIO L. Potentials of cooled EGR and water injection for knock resistance and fuel consumption improvements of gasoline engines [J]. Applied Energy, 2016, 169: 112–125. DOI: https://doi.org/10.1016/j.apenergy.2016.01.129.

    Article  Google Scholar 

  20. LI Xiao-yan, ZHEN Xu-dong, WANG Yang, et al. The knock study of high compression ratio SI engine fueled with methanol in combination with different EGR rates [J]. Fuel, 2019, 257: 116098. DOI: https://doi.org/10.1016/j.fuel.2019.116098.

    Article  Google Scholar 

  21. ZHEN Xu-dong, WANG Yang, XU Shuai-qing, et al. The engine knock analysis—An overview [J]. Applied Energy, 2012, 92: 628–636. DOI: https://doi.org/10.1016/j.apenergy.2011.11.079.

    Article  Google Scholar 

  22. REN Fei, XIANG Long-kai, CHU Hua-qiang, et al. Numerical investigation on the effect of CO2 and steam for the H2 intermediate formation and NOx emission in laminar premixed methane/air flames [J]. International Journal of Hydrogen Energy, 2020, 45(6): 3785–3794. DOI: https://doi.org/10.1016/j.ijhydene.2019.05.096.

    Article  Google Scholar 

  23. LEE S, SHIN C H, CHOI S, et al. Characteristics of NOx emissions of counterflow nonpremixed water-laden methane/air flames [J]. Energy, 2018, 164: 523–535. DOI: https://doi.org/10.1016/j.energy.2018.09.017.

    Article  Google Scholar 

  24. ZHANG Xin-hua, WANG Zhao-wen, HUANG Sheng, et al. Experimental study of CH4-air premixed spherical expanding flames with microwave assisted ignition [J]. Transactions of CSICE (Chinese Society for Internal Combustion Engines), 2020, 38(3): 226–233. DOI: https://doi.org/10.16236/j.cnki.nrjxb.202003030. (in Chinese)

    Google Scholar 

  25. ZHANG Xin-hua, WANG Zhao-wen, WU Hui-min, et al. Experimental study of microwave assisted spark ignition on expanding C2H2-air spherical flames [J]. Combustion and Flame, 2020, 222: 111–122. DOI: https://doi.org/10.1016/j.combustflame.2020.08.043.

    Article  Google Scholar 

  26. ZHANG Xin-hua, WANG Zhao-wen, ZHOU Dong, et al. Strengthening effect of microwave on spark ignited spherical expanding flames of methane-air mixture [J]. Energy Conversion and Management, 2020, 224: 113368. DOI: https://doi.org/10.1016/j.enconman.2020.113368.

    Article  Google Scholar 

  27. ZHANG Xin-hua, WANG Zhao-wen, WU Hui-min, et al. Propulsive effect of microwave-induced plasma jet on spark ignition of CO2-diluted CH4-air mixture [J]. Combustion and Flame, 2021, 229: 111400. DOI: https://doi.org/10.1016/j.combustflame.2021.111400.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

WANG Zhao-wen, CHENG Xiao-bei and CHEN Jyh-Yuan provided the concept and edited the draft of manuscript. ZHANG Xin-hua conducted the literature review and wrote the first draft of the manuscript. WU Hui-min and LIU Chao-hui conducted the ignition tests and recorded the flame developing data. WANG Zhi-hao and LI Xiao-jie analyzed the recorded data. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Zhao-wen Wang  (王兆文).

Additional information

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Foundation item: Project(KF2028) supported by the State key Laboratory of Automotive Safety and Energy, China; Project(KF2028) supported by the State Key Laboratory of Automotive Safety and Energy, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xh., Wang, Zw., Wu, Hm. et al. CO2-diluted CH4-air premixed spherical flames with microwave-assisted spark ignition. J. Cent. South Univ. 29, 2157–2164 (2022). https://doi.org/10.1007/s11771-022-5043-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5043-4

Key words

关键词

Navigation