Skip to main content
Log in

Li1.4Al0.4Ti1.6(PO4)3 coated Li1.2Ni0.13Co0.13Mn0.54O2 for enhancing electrochemical performance of lithium-ion batteries

Li1.4Al0.4Ti1.6(PO4)3修饰富锂锰基Li1.2Ni0.13Co0.13Mn0.54O2锂离子电池正极材料

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Lithium (Li)-rich manganese (Mn)-based cathode Li1.2Ni0.13Co0.13Mn0.54O2 (LRNCM) has attracted considerable attention owing to its high specific discharge capacity and low cost. However, unsatisfactory cycle performance and poor rate property hinder its large-scale application. The fast ionic conductor has been widely used as the cathode coating material because of its superior stability and excellent lithium-ion conductivity rate. In this study, Li1.2Ni0.13Co0.13Mn0.54O2 is modified by using Li1.4Al0.4Ti1.6(PO4)3 (LATP) ionic conductor The electrochemical test results show that the discharge capacity of the resulting LRNCM@LATP1 sample is 198 mA·h/g after 100 cycles at 0.2C, with a capacity retention of 81%. Compared with the uncoated pristine LRNCM (188.4 mA·h/g and 76%), LRNCM after the LATP modification shows superior cycle performance. Moreover, the lithium-ion diffusion coefficient DLi+ is a crucial factor affecting the rate performance, and the DLi+ of the LRNCM material is improved from 4.94×10−13 to 5.68×10−12 cm2/s after modification. The specific capacity of LRNCM@LATP1 reaches 102.5 mA·h/g at 5C, with an improved rate performance. Thus, the modification layer can considerably enhance the electrochemical performance of LRNCM.

摘要

富锂锰基材料Li1.2Ni0.13Co0.13Mn0.54O2(LRNCM)以其优异的放电比容量和低廉的成本成为锂离子电 池正极材料的研究热点。然而,富锂锰基材料存在循环性能和倍率性能差的不足,限制了其商业化的 应用。快离子导体因其具有较好的稳定性和较高的锂离子传导速率等特点,被广泛用于正极材料的包 覆研究。本研究采用溶胶凝胶法合成了Li1.4Al0.4Ti1.6(PO4)3(LATP)快离子导体,并对Li1.2Ni0.13Co0.13Mn0.54O2 正极材料颗粒表面进行包覆改性。电化学测试结果表明,LRNCM@LATP1 样品在0.2C 条件下 循环100 次仍有198 mA·h/g 的放电比容量, 容量保持率达到81%, 相较未包覆的P-LRNCM (放电比容量188.4 mA·h/g,容量保持率76%)表现出更优异的循环性能。离子扩散速率(DLi+)是影响材 料倍率性能的重要因素,包覆1%LATP的LRNCM材料(LRNCM@LATP1)在100 次循环后,DLi+从包覆 前的4.94×10−13 cm2/s 提高到包覆后的5.68×10−12 cm2/s, 材料界面的离子传输能力得到了改善, LRNCM@LATP1 在5C 放电条件下的比容量可以达到102.5 mA·h/g,高倍率性能得到提升。因而, LATP的包覆改性可有效提高Li1.2Ni0.13Co0.13Mn0.54O2的电化学性能,对锂离子正极材料的研究具有重要的 意义。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SUN Chun, LIU Ming-ming, WANG Long-lu, et al. Revisiting lithium-storage mechanisms of molybdenum disulfide [J]. Chinese Chemical Letters, 2022, 33(4): 1779–1797. DOI: https://doi.org/10.1016/j.cclet.2021.08.052.

    Article  Google Scholar 

  2. ZOU Gui-shan, YANG Xiu-kang, WANG Xian-you, et al. Improvement of electrochemical performance for Li-rich spherical Li1.3[Ni0.35Mn0.65]O2+x modified by Al2O3 [J]. Journal of Solid State Electrochemistry, 2014, 18(7): 1789–1797. DOI: https://doi.org/10.1007/s10008-014-2411-5

    Article  Google Scholar 

  3. DENG Yu-feng, ZHAO Shi-xi, XU Ya-hui, et al. Effect of temperature of Li2O-Al2O3-TiO2-P2O5 solid-state electrolyte coating process on the performance of LiNi0.5Mn1.5O4 cathode materials [J]. Journal of Power Sources, 2015, 296: 261–267. DOI: https://doi.org/10.1016/j.jpowsour.2015.07.017.

    Article  Google Scholar 

  4. HAN En-shan, LI Yan-pu, ZHU Ling-zhi, et al. The effect of MgO coating on Li1.17Mn0.48Ni0.23Co0.12O2 cathode material for lithium ion batteries [J]. Solid State Ionics, 2014, 255: 113–119. DOI: 10.1016/j.ssi.2013.12.018.

    Article  Google Scholar 

  5. YU Rui-bing, LIN Ying-bin, HUANG Zhi-gao. Investigation on the enhanced electrochemical performances of Li1.2Ni0.13Co0.13Mn0.54O2 by surface modification with ZnO [J]. Electrochimica Acta, 2015, 173: 515–522. DOI: https://doi.org/10.1016/j.electacta.2015.05.084.

    Article  Google Scholar 

  6. ZHAO Jian-qing, AZIZ S, WANG Ying. Hierarchical functional layers on high-capacity lithium-excess cathodes for superior lithium ion batteries [J]. Journal of Power Sources, 2014, 247: 95–104. DOI: https://doi.org/10.1016/jjpowsour.2013.08.071.

    Article  Google Scholar 

  7. LI Li, ZHAO Rui, PAN Du, et al. Constructing tri-functional modification for spinel LiNi0.5Mn1.5O4 via fast ion conductor [J]. Journal of Power Sources, 2020, 450: 227677. DOI: https://doi.org/10.1016/j.jpowsour.2019.227677.

    Article  Google Scholar 

  8. WU Cheng-ren, FANG Xiang-peng, GUO Xian-wei, et al. Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole [J]. Journal of Power Sources, 2013, 231: 44–49. DOI: https://doi.org/10.1016/j.jpowsour.2012.11.138.

    Article  Google Scholar 

  9. WU Feng, LIU Jian-rui, LI Li, et al. Surface modification of Li-rich cathode materials for lithium-ion batteries with a PEDOT: PSS conducting polymer [J]. ACS Applied Materials & Interfaces, 2016, 8(35): 23095–23104. DOI: https://doi.org/10.1021/acsami.6b07431.

    Article  Google Scholar 

  10. LI Wang-da, SONG Bo-hang, MANTHIRAM A. Highvoltage positive electrode materials for lithium-ion batteries [J]. Chemical Society Reviews, 2017, 46(10): 3006–3059. DOI: https://doi.org/10.1039/C6CS00875E.

    Article  Google Scholar 

  11. CHOI J W, LEE J W. Improved electrochemical properties of Li(Ni0.6Mn0.2Co0.2)O2 by surface coating with Li1.3Al0.3Ti1.7(PO4)3 [J]. Journal of Power Sources, 2016, 307: 63–68. DOI: https://doi.org/10.1016/j.jpowsour.2015.12.055.

    Article  Google Scholar 

  12. LIU Yun-jian, FAN Xiao-jian, HUANG Xiao-zi-li, et al. Electrochemical performance of Li1.2Ni0.2Mn0.6O2 coated with a facilely synthesized Li1.3Al0.3Ti1.7(PO4)3 [J]. Journal of Power Sources, 2018, 403: 27–37. DOI: https://doi.org/10.1016/j.jpowsour.2018.09.082.

    Article  Google Scholar 

  13. ARBI K, LAZARRAGA M G, BEN HASSEN CHEHIMI D, et al. Lithium mobility in Li1.2Ti1.8R0.2(PO4)3 compounds (R = Al, Ga, Sc, In) as followed by NMR and impedance spectroscopy [J]. Chemistry of Materials, 2004, 16(2): 255–262. DOI: https://doi.org/10.1021/cm030422i.

    Article  Google Scholar 

  14. WANG Gang, YI Li-ling, YU Rui-zhi, et al. Li1.2Ni0.13Co0.13Mn0.54O2 with controllable morphology and size for high performance lithium-ion batteries [J]. ACS Applied Materials & Interfaces, 2017, 9(30): 25358–25368. DOI: https://doi.org/10.1021/acsami.7b07095.

    Article  Google Scholar 

  15. WU Xian-ming, LI Run-xiu, CHEN Shang, et al. Synthesis and characterization of Li1.3Al0.3Ti1.7(PO4)3-coated LiMn2O4 by wet chemical route [J]. Rare Metals, 2009, 28(2): 122–126. DOI: https://doi.org/10.1007/s12598-009-0024-4.

    Article  Google Scholar 

  16. WANG Ting, YANG Ze, JIANG Yan, et al. Improving the electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 by Li-ion conductor [J]. RSC Advances, 2016, 6: 63749–63753

    Article  Google Scholar 

  17. WANG Long-long, CHEN Bing-bing, MA Jun, et al. Reviving lithium cobalt oxide-based lithium secondary batteries-toward a higher energy density [J]. Chemical Society Reviews, 2018, 47(17): 6505–6602. DOI: https://doi.org/10.1039/c8cs00322j.

    Article  Google Scholar 

  18. MONCHAK M, HUPFER T, SENYSHYN A, et al. Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor [J]. Inorganic Chemistry, 2016, 55(6): 2941–2945. DOI: https://doi.org/10.1021/acs.inorgchem.5b02821.

    Article  Google Scholar 

  19. GHORBANZADEH M, ALLAHYARI E, RIAHIFAR R, et al. Effect of Al and Zr co-doping on electrochemical performance of cathode Li[Li0.2Ni0.13Co0.13Mn0.54]O2 for Li-ion battery [J]. Journal of Solid State Electrochemistry, 2018, 22(4): 1155–1163. DOI: https://doi.org/10.1007/s10008-017-3824-8.

    Article  Google Scholar 

  20. KIM K M, SHIN D O, LEE Y G. Effects of preparation conditions on the ionic conductivity of hydrothermally synthesized Li1+xAlxTi2-x((PO4)3 solid electrolytes [J]. Electrochimica Acta, 2015, 176: 1364–1373. DOI: https://doi.org/10.1016/j.electacta.2015.07.170.

    Article  Google Scholar 

  21. JOHNSON C S, LI Nai-chao, LEFIEF C, et al. Anomalous capacity and cycling stability of xLi2MnO3· (1 − x)LiMO2 electrodes (M=Mn, Ni, Co) in lithium batteries at 50 °C [J]. Electrochemistry Communications, 2007, 9(4): 787–795. DOI: https://doi.org/10.1016/j.elecom.2006.11.006.

    Article  Google Scholar 

  22. WANG Fu, ZHANG Yun, ZOU Ji-zhou, et al. The structural mechanism of the improved electrochemical performances resulted from sintering atmosphere for LiNi0.5Co0.2Mn0.3O2 cathode material [J]. Journal of Alloys and Compounds, 2013, 558: 172–178. DOI: https://doi.org/10.1016/j.jallcom.2013.01.091.

    Article  Google Scholar 

  23. HU Guo-rong, DENG Xin-rong, PENG Zhong-dong, et al. Preparation of spherical and dense LiNi0.8Co0.2O2 lithium-ion battery particles by spray pyrolysis [J]. Journal of Central South University of Technology, 2008, 15(1): 29–33. DOI: https://doi.org/10.1007/s11771-008-0007-x.

    Article  Google Scholar 

  24. MANTHIRAM A, KNIGHT J C, MYUNG S T, et al. Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives [J]. Advanced Energy Materials, 2016, 6(1): 1501010. DOI: https://doi.org/10.1002/aenm.201501010.

    Article  Google Scholar 

  25. ZHAO Tao-lin, LI Li, CHEN Ren-jie, et al. Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries [J]. Nano Energy, 2015, 15: 164–176. DOI: https://doi.org/10.1016/j.nanoen.2015.04.013.

    Article  Google Scholar 

  26. SONG Bo-hang, ZHOU Cui-feng, WANG Hai-long, et al. Advances in sustain stable voltage of Cr-doped Li-rich layered cathodes for lithium ion batteries [J]. Journal of the Electrochemical Society, 2014, 161(10): A1723–A1730. DOI: https://doi.org/10.1149/2.0461410jes.

    Article  Google Scholar 

  27. FU Fang, HUANG Yi-yin, WU Peng, et al. Controlled synthesis of lithium-rich layered Li1.2Mn0.56Ni0.12Co0.12O2 oxide with tunable morphology and structure as cathode material for lithium-ion batteries by solvo/hydrothermal methods [J]. Journal of Alloys and Compounds, 2015, 618: 673–678. DOI: https://doi.org/10.1016/j.jallcom.2014.08.191.

    Article  Google Scholar 

  28. SHEN Chong-heng, WANG Qin, FU Fang, et al. Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge-discharge cycle: in situ XRD characterization [J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5516–5524. DOI: https://doi.org/10.1021/am405844b.

    Article  Google Scholar 

  29. GHORBANZADEH M, ALLAHYARI E, RIAHIFAR R, et al. Effect of Al and Zr co-doping on electrochemical performance of cathode Li[Li0.2Ni0.13Co0.13Mn0.54]O2 for Li-ion battery [J]. Journal of Solid State Electrochemistry, 2018, 22(4): 1155–1163. DOI: https://doi.org/10.1007/s10008-017-3824-8.

    Article  Google Scholar 

  30. ZHANG H Z, QIAO Q Q, LI G R, et al. PO43− polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries [J]. Journal of Materials Chemistry A, 2014, 2(20): 7454–7460. DOI: https://doi.org/10.1039/C4TA00699B.

    Article  Google Scholar 

  31. YU Xing-wen, MANTHIRAM A. Enhanced interfacial stability of hybrid-electrolyte lithium-sulfur batteries with a layer of multifunctional polymer with intrinsic nanoporosity [J]. Advanced Functional Materials, 2019, 29(3): 1805996. DOI: https://doi.org/10.1002/adfm.201805996.

    Article  Google Scholar 

  32. JIANG Yun-shan, SUN Gang, YU Fu-da, et al. Surface modification by fluorine doping to increase discharge capacity of Li1.2Ni0.2Mn0.6O2 cathode materials [J]. Ionics, 2020, 26(1): 151–161. DOI: https://doi.org/10.1007/s11581-019-03202-2.

    Article  Google Scholar 

  33. SONG Yuan-zhe, ZHAO Xue-bing, WANG Chao, et al. Insight into the atomic structure of Li2MnO3 in Li-rich Mn-based cathode materials and the impact of its atomic arrangement on electrochemical performance [J]. Journal of Materials Chemistry A, 2017, 5(22): 11214–11223. DOI: https://doi.org/10.1039/c7ta02151h.

    Article  Google Scholar 

  34. WANG Long-lu, XIE Ling-bin, ZHAO Wei-wei, et al. Oxygen-facilitated dynamic active-site generation on strained MoS2 during photo-catalytic hydrogen evolution [J]. Chemical Engineering Journal, 2021, 405: 127028. DOI: https://doi.org/10.1016/j.cej.2020.127028.

    Article  Google Scholar 

  35. YANG Zhe, ZHONG Jian-jian, FENG Jia-meng, et al. Structural dimension gradient design of oxygen framework to suppress the voltage attenuation and hysteresis in lithium-rich materials [J]. Chemical Engineering Journal, 2022, 427: 130723. DOI: https://doi.org/10.1016/j.cej.2021.130723.

    Article  Google Scholar 

  36. LEI C H, BAREÑO J, WEN J G, et al. Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy [J]. Journal of Power Sources, 2008, 178(1): 422–433. DOI: https://doi.org/10.1016/j.jpowsour.2007.11.077.

    Article  Google Scholar 

  37. ARMSTRONG A R, HOLZAPFEL M, NOVÁK P, et al. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J]. Journal of the American Chemical Society, 2006, 128(26): 8694–8698. DOI: https://doi.org/10.1021/ja062027+.

    Article  Google Scholar 

  38. ARAVINDAN V, CHUILING W, MADHAVI S. Electrochemical performance of NASICON type carbon coated LiTi2(PO4)3 with a spinel LiMn2O4 cathode [J]. RSC Advances, 2012, 2(19): 7534–7539. DOI: https://doi.org/10.1039/C2RA20826A.

    Article  Google Scholar 

  39. ROH H K, KIM H K, ROH K C, et al. LiTi2(PO4)3/reduced graphene oxide nanocomposite with enhanced electrochemical performance for lithium-ion batteries [J]. RSC Advances, 2014, 4(60): 31672–31677. DOI: https://doi.org/10.1039/c4ra04943h.

    Article  Google Scholar 

  40. XIE Ling-bin, WANG Long-lu, ZHAO Wei-wei, et al. WS2 moiré superlattices derived from mechanical flexibility for hydrogen evolution reaction [J]. Nature Communications, 2021, 12: 5070. DOI: https://doi.org/10.1038/s41467-021-25381-1.

    Article  Google Scholar 

  41. ZHANG Xin-long, HU Guo-rong, PENG Zhong-dong. Preparation and effects of W-doping on electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery [J]. Journal of Central South University, 2013, 20(5): 1151–1155. DOI: https://doi.org/10.1007/s11771-013-1597-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by LAI Xiang-wan, HU Guo-rong and LIU Ye-xiang. LAI Xiang-wan and CAO Yan-bing conducted the experiments and analyzed the measured results. The initial draft of the manuscript was written by LAI Xiang-wan. LAI Xiang-wan and DU Ke revised the initial draft. LAI Xiang-wan and PENG Zhong-dong replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Guo-rong Hu  (胡国荣).

Additional information

Conflict of interest

The authors declare that they have no conflict of interest.

Foundation item: Project(51772333) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, Xw., Hu, Gr., Peng, Zd. et al. Li1.4Al0.4Ti1.6(PO4)3 coated Li1.2Ni0.13Co0.13Mn0.54O2 for enhancing electrochemical performance of lithium-ion batteries. J. Cent. South Univ. 29, 1463–1478 (2022). https://doi.org/10.1007/s11771-022-5037-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5037-2

Key words

关键词

Navigation