Skip to main content
Log in

Effective remediation of cadmium and lead contaminated soils by a novel slow-release phosphate amendment

新型缓释磷酸盐固定剂对镉和铅污染的土壤的修复效果

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Phosphate is widely used to immobilize cadmium (Cd) and lead (Pb) in soils through the insoluble metal phosphate precipitation. However, an increase in the phosphorus content of the environment can cause new pollution. In this study, five slow-release phosphate amendments (SRPAs) were synthesized and their characteristics including BET, SEM, FTIR, swelling ratio, and thephosphorus release were determined. The results show that SRPA was a sphere with a network structure with a specific surface area of 5 to 7.18 m2/g andcontained phosphate, hydroxyl, carboxyl and other functional groups. Among five SRPAs, S3 sample showed good performance for phosphate release. Phosphate release from SRPA was well fitted with Ritger-Peppas model with constant n between 0.45 and 0.85, indicating that the phosphate release was in accordance with non-Fickian diffusion. As compared with monocalcium phosphate (MCP), SRPA application led to a lower concentration of water-soluble phosphorus in the soil sample and higher remediation efficiencies of Cd and Pb. The remediation efficiencies of water-soluble Cd and Pb in soil with SRPA were 97.1% and 97.9%, respectively. The remediation efficiencies of bioavailable Cd and Pb were 71.85% and 76.47%, respectively. The results of Tessier extraction showed that the exchangeable and carbonatebound fractions of Cd and Pb in the soil sample after SRPA application significantly reduced, while the residual fraction increased, indicating the stability of heavy metals increased.

摘要

磷酸盐通过不溶性金属磷酸盐沉淀而被广泛应用于镉、铅污染土壤的稳定修复. 但是, 环境中磷含量的增加会引起新的污染, 而缓释磷酸盐因兼具稳定重金属和降低二次污染风险的特性而备受关注. 本文制备了一种新型的缓释磷酸盐固定剂(SRPA), 对其进行了BET, SEM, FTIR, 溶胀率, 磷含量等表征. 结果表明, SRPA是一种内部具有网状结构的球体, 除磷酸盐外, 还含有羟基, 羧基和其他官能团, 比表面积为5∼7.18 m2/g. SRPA的磷酸盐含量从5%增加到8%, Korsmeyer-Peppus 模型表明, non-Fickian 扩散过程对磷酸盐的释放起着主要控制作用. 将SRPA应用于土壤后, 我们发现与传统的磷酸盐改良剂相比, 土壤中水溶性磷的浓度大大降低. SRPA比传统的磷酸盐改良剂对土壤的修复效果更好. 水溶性镉(Cd)和铅(Pb)的修复效率分别从68.57%提高到97.09%, 和从76.9%提高到97.89%. 可生物利用的Cd和Pb 分别从63.09%增加到71.85%, 和从66.21%增加到76.47%. 提取物的实验结果表明, 随着残留重金属的增加, 修复后土壤中重金属的可交换和碳酸盐结合的含量显着降低, 表明重金属的稳定性增加.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ÁLVAREZ-AYUSO E, GARCÍA-SÁNCHEZ A. Sepiolite as a feasible soil additive for the immobilization of cadmium and zinc [J]. Science of the Total Environment, 2003, 305(1–3): 1–12. DOI: https://doi.org/10.1016/S0048-9697(02)00468-0.

    Article  Google Scholar 

  2. HUANG Guo-yong, SU Xiao-juan, RIZWAN M S, et al. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils [J]. Environmental Science and Pollution Research, 2016, 23(16): 16845–16856. DOI: https://doi.org/10.1007/s11356-016-6885-9.

    Article  Google Scholar 

  3. MIGNARDI S, CORAMI A, FERRINI V. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn [J]. Chemosphere, 2012, 86(4): 354–360. DOI: https://doi.org/10.1016/j.chemosphere.2011.09.050.

    Article  Google Scholar 

  4. MARTÍNEZ-GÓMEZ F, GUERRERO J, MATSUHIRO B, et al. In vitro release of metformin hydrochloride from sodium alginate/polyvinyl alcohol hydrogels [J]. Carbohydrate Polymers, 2017, 155: 182–191. DOI: https://doi.org/10.1016/j.carbpol.2016.08.079.

    Article  Google Scholar 

  5. ANITHA T, KUMAR P S, KUMAR K S, et al. Biosorption of lead(II) ions onto nano-sized chitosan particle blended polyvinyl alcohol (PVA): Adsorption isotherms, kinetics and equilibrium studies [J]. Desalination and Water Treatment, 2016, 57(29): 13711–13721. DOI: https://doi.org/10.1080/19443994.2015.1061951.

    Article  Google Scholar 

  6. ZHANG Dan, ZHANG Yu, SHEN Fei, et al. Removal of cadmium and lead from heavy metals loaded PVA — SA immobilizedLentinus edodes [J]. Desalination and Water Treatment, 2014, 52(25–27): 4792–4801. DOI: https://doi.org/10.1080/19443994.2013.809936.

    Article  Google Scholar 

  7. MIKHAILOVA E A, NOBLE R R P, POST C J. Comparison of soil organic carbon recovery by walkley-black and dry combustion methods in the Russian chernozem [J]. Communications in Soil Science and Plant Analysis, 2003, 34(13, 14): 1853–1860. DOI: https://doi.org/10.1081/css-120023220.

    Article  Google Scholar 

  8. WANG Yun-yan, YAO Wen-bin, WANG Qing-wei, et al. Synthesis of phosphate-embedded calcium alginate beads for Pb(II) and Cd(II) sorption and immobilization in aqueous solutions [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(8): 2230–2237. DOI: https://doi.org/10.1016/S1003-6326(16)64340-6.

    Article  Google Scholar 

  9. JIN Lan, LIU Qing, SUN Zhi-yong, et al. Preparation of 5-fluorouracil/β-cyclodextrin complex intercalated in layered double hydroxide and the controlled drug release properties [J]. Industrial & Engineering Chemistry Research, 2010, 49(22): 11176–11181. DOI: https://doi.org/10.1021/ie100990z.

    Article  Google Scholar 

  10. LAWRIE G, KEEN I, DREW B, et al. Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS [J]. Biomacromolecules, 2007, 8(8): 2533–2541. DOI: https://doi.org/10.1021/bm070014y.

    Article  Google Scholar 

  11. HASNAIN M S, NAYAK A K, SINGH M, et al. Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release [J]. International Journal of Biological Macromolecules, 2016, 83: 71–77. DOI: https://doi.org/10.1016/j.ijbiomac.2015.11.044.

    Article  Google Scholar 

  12. HUQ T, FRASCHINI C, KHAN A, et al. Alginate based nanocomposite for microencapsulation of probiotic: Effect of cellulose nanocrystal (CNC) and lecithin [J]. Carbohydrate Polymers, 2017, 168: 61–69. DOI: https://doi.org/10.1016/j.carbpol.2017.03.032.

    Article  Google Scholar 

  13. STOCH P, STOCH A, CIECINSKA M, et al. Structure of phosphate and iron-phosphate glasses by DFT calculations and FTIR/Raman spectroscopy [J]. Journal of Non-Crystalline Solids, 2016, 450: 48–60. DOI: https://doi.org/10.1016/j.jnoncrysol.2016.07.027.

    Article  Google Scholar 

  14. HASNAIN M S, NAYAK A K, SINGH M, et al. Alginate-based bipolymeric-nanobioceramic composite matrices for sustained drug release [J]. International Journal of Biological Macromolecules, 2016, 83: 71–77. DOI: https://doi.org/10.1016/j.ijbiomac.2015.11.044.

    Article  Google Scholar 

  15. XU Shi-mei, WU Rong-lan, HUANG Xiao-juan, et al. Effect of the anionic-group/cationic-group ratio on the swelling behavior and controlled release of agrochemicals of the amphoteric, superabsorbent polymer poly(acrylic acid-co-diallyldimethylammonium chloride) [J]. Journal of Applied Polymer Science, 2006, 102(2): 986–991. DOI: https://doi.org/10.1002/app.23990.

    Article  Google Scholar 

  16. HUA Shui-bo, MA Hai-zhen, LI Xun, et al. pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium [J]. International Journal of Biological Macromolecules, 2010, 46(5): 517–523. DOI: https://doi.org/10.1016/j.ijbiomac.2010.03.004.

    Article  Google Scholar 

  17. SILVA D, PINTO L F V, BOZUKOVA D, et al. Chitosan/alginate based multilayers to control drug release from ophthalmic lens [J]. Colloids and Surfaces B: Biointerfaces, 2016, 147: 81–89. DOI: https://doi.org/10.1016/j.colsurfb.2016.07.047.

    Article  Google Scholar 

  18. ZHAO Ling, CAO Xin-de, ZHENG Wei, et al. Copyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil [J]. ACS Sustainable Chemistry & Engineering, 2016, 4(3): 1630–1636. DOI: https://doi.org/10.1021/acssuschemeng.5b01570.

    Article  Google Scholar 

  19. PEDACCHIA A, ADROVER A. Study of release kinetics and diffusion coefficients in swellable cellulosic thin films by means of a simple spectrophotometric technique [J]. Chemical Engineering Research and Design, 2014, 92(11): 2550–2556. DOI: https://doi.org/10.1016/j.cherd.2014.03.017.

    Article  Google Scholar 

  20. TAJAROBI F, LARSSON A, MATIC H, et al. The influence of crystallization inhibition of HPMC and HPMCAS on model substance dissolution and release in swellable matrix tablets [J]. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 78(1): 125–133. DOI: https://doi.org/10.1016/j.ejpb.2010.11.020.

    Article  Google Scholar 

  21. MARSHALL J A, MORTON B J, MUHLACK R, et al. Recovery of phosphate from calcium-containing aqueous solution resulting from biochar-induced calcium phosphate precipitation [J]. Journal of Cleaner Production, 2017, 165: 27–35. DOI: https://doi.org/10.1016/j.jclepro.2017.07.042.

    Article  Google Scholar 

  22. SILVA D, PINTO L F V, BOZUKOVA D, et al. Chitosan/alginate based multilayers to control drug release from ophthalmic lens [J]. Colloids and Surfaces B: Biointerfaces, 2016, 147: 81–89. DOI: https://doi.org/10.1016/j.colsurfb.2016.07.047.

    Article  Google Scholar 

  23. CHOURASIYA V, BOHREY S, PANDEY A. Formulation, optimization, characterization and in-vitro drug release kinetics of atenolol loaded PLGA nanoparticles using 33 factorial design for oral delivery [J]. Materials Discovery, 2016, 5: 1–13. DOI: https://doi.org/10.1016/j.md.2016.12.002.

    Article  Google Scholar 

  24. AGÜERO L, ZALDIVAR-SILVA D, PEÑA L, et al. Alginate microparticles as oral colon drug delivery device: A review [J]. Carbohydrate Polymers, 2017, 168: 32–43. DOI: https://doi.org/10.1016/j.carbpol.2017.03.033.

    Article  Google Scholar 

  25. CIZMECIOGLU S C, MUEZZINOGLU A. Solubility of deposited airborne heavy metals [J]. Atmospheric Research, 2008, 89(4): 396–404. DOI: https://doi.org/10.1016/j.atmosres.2008.03.012.

    Article  Google Scholar 

  26. PATRICK W H Jr, HENDERSON R E. Reduction and reoxidation cycles of manganese and iron in flooded soil and in water solution [J]. Soil Science Society of America Journal, 1981, 45(5): 855–859. DOI: https://doi.org/10.2136/sssaj1981.03615995004500050006x.

    Article  Google Scholar 

  27. XIAO Ling, GUAN Dong-sheng, PEART M R, et al. The influence of bioavailable heavy metals and microbial parameters of soil on the metal accumulation in rice grain [J]. Chemosphere, 2017, 185: 868–878. DOI: https://doi.org/10.1016/j.chemosphere.2017.07.096.

    Article  Google Scholar 

  28. ESCAMILLA-ROA E, HUERTAS F J, HERNÁNDEZ-LAGUNA A, et al. A DFT study of the adsorption of glycine in the interlayer space of montmorillonite [J]. Physical Chemistry Chemical Physics, 2017, 19(23): 14961–14971. DOI: https://doi.org/10.1039/c7cp02300f.

    Article  Google Scholar 

  29. BAUN D L, CHRISTENSEN T H. Speciation of heavy metals in landfill leachate: A review [J]. Waste Management & Research: the Journal of the International Solid Wastes and Public Cleansing Association, ISWA, 2004, 22(1): 3–23. DOI: https://doi.org/10.1177/0734242X04042146.

    Article  Google Scholar 

  30. MAHAR A, WANG Ping, LI Rong-hua, et al. Immobilization of lead and cadmium in contaminated soil using amendments: A review [J]. Pedosphere, 2015, 25(4): 555–568. DOI: https://doi.org/10.1016/S1002-0160(15)30036-9.

    Article  Google Scholar 

  31. ZHONG Cong, FENG Zi-xu, JIANG Wei, et al. Evaluation of geogenic cadmium bioavailability in soil-rice system with high geochemical background caused by black shales [J]. Journal of Soils and Sediments, 2021, 21(2): 1053–1063. DOI: https://doi.org/10.1007/s11368-020-02802-0.

    Article  Google Scholar 

  32. HOUBEN D, EVRARD L, SONNET P. Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar [J]. Chemosphere, 2013, 92(11): 1450–1457. DOI: https://doi.org/10.1016/j.chemosphere.2013.03.055.

    Article  Google Scholar 

  33. SUN Li-na, CHEN Su, CHAO Lei, et al. Effects of flooding on changes in Eh, pH and speciation of cadmium and lead in contaminated soil [J]. Bulletin of Environmental Contamination and Toxicology, 2007, 79(5): 514–518. DOI: https://doi.org/10.1007/s00128-007-9274-8.

    Article  Google Scholar 

  34. DING Chang-feng, DU Shu-yang, MA Yi-bing, et al. Changes in the pH of paddy soils after flooding and drainage: Modeling and validation [J]. Geoderma, 2019, 337: 511–513. DOI: https://doi.org/10.1016/j.geoderma.2018.10.012.

    Article  Google Scholar 

  35. KUO S, MCNEAL B L. Effects of pH and phosphate on cadmium sorption by a hydrous ferric oxide [J]. Soil Science Society of America Journal, 1984, 48(5): 1040–1044. DOI: https://doi.org/10.2136/sssaj1984.03615995004800050018x.

    Article  Google Scholar 

  36. KRISHNAMURTI G S R, HUANG P M, KOZAK L M. Sorption and desorption kinetics of cadmium from soils: Influence of phosphate [J]. Soil Science, 1999, 164(12): 888–898. DOI: https://doi.org/10.1097/00010694-199912000-00002.

    Article  Google Scholar 

  37. CAO X D, MA L Q, CHEN M, et al. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site [J]. Environmental Science & Technology, 2002, 36(24): 5296–5304. DOI: https://doi.org/10.1021/es020697j.

    Article  Google Scholar 

  38. YU Huan-yun, LIU Chuan-ping, ZHU Ji-shu, et al. Cadmium availability in rice paddy fields from a mining area: The effects of soil properties highlighting iron fractions and pH value [J]. Environmental Pollution, 2016, 209: 38–45. DOI: https://doi.org/10.1016/j.envpol.2015.11.021.

    Article  Google Scholar 

  39. HAMMOND L L, CHIEN S H, ROY A H, et al. Solubility and agronomic effectiveness of partially acidulated phosphate rocks as influenced by their iron and aluminium oxide content [J]. Fertilizer Research, 1989, 19(2): 93–98. DOI: https://doi.org/10.1007/BF01054680.

    Article  Google Scholar 

  40. BARTOS J M, MULLINS G L, WILLIAMS J C, et al. Water-insoluble impurity effects on phosphorus availability in monoammonium phosphate fertilizers [J]. Soil Science Society of America Journal, 1992, 56(3): 972–976. DOI: https://doi.org/10.2136/sssaj1992.03615995005600030048x.

    Article  Google Scholar 

  41. YLIVAINIO K. Effects of iron(III) chelates on the solubility of heavy metals in calcareous soils [J]. Environmental Pollution, 2010, 158(10): 3194–3200. DOI: https://doi.org/10.1016/j.envpol.2010.07.004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-hui Yang  (杨志辉).

Additional information

Foundation item

Projects(2020YFC1808002, 2019YFD1100502) supported by the National Key R& D Program of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Wb., Huang, L., Zhao, Fp. et al. Effective remediation of cadmium and lead contaminated soils by a novel slow-release phosphate amendment. J. Cent. South Univ. 29, 1185–1196 (2022). https://doi.org/10.1007/s11771-022-5031-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5031-8

Key words

关键词

Navigation