Skip to main content
Log in

Experimental and numerical studies on vibration characteristics of a railway embankment

铁路路基振动特性实验和数值模拟研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to study the dynamic response of the rail embankment under different speeds and moving load of following vehicles, a model experiment with a ratio of 1:10 is established to test the time history of acceleration and the earth pressure of the embankment at various train speeds. Using the ABAQUS finite element calculation software, a train load is applied through the FORTRAN subroutine, thereby establishing a three-dimensional finite element model with the same size as the model experiment. The data and conclusions of the finite element method model are verified by the model experiment. The model also makes some supplements to the model experiment. The experimental results show that with the increase of speed, the peak acceleration and earth pressure of the embankment also increase. By analyzing the experimental data, it can also be found that the vertical acceleration of the embankment is much greater than the axial acceleration and the lateral acceleration. In addition, the elastic modulus of the soil and the sleeper pitch also have some influence on the acceleration.

摘要

为了研究路基在不同速度下由车辆荷载引起的动态响应,建立了比例为1:10的模型实验,以 测试不同列车速度下路基的加速度和土压力。使用ABAQUS有限元计算软件,通过FORTRAN子程序 来施加列车移动载荷,建立与模型实验相同尺寸的三维有限元模型。通过对比模型实验和有限元方法 的数据,验证了有限元方法的数据和结论。该有限元模型也为模型实验提供了补充。实验结果表明, 随着速度的加快,路基的峰值加速度和土压力也随之增加。通过分析实验数据,发现路基的垂直加速 度远大于轴向加速度和横向加速度。另外,土壤的弹性模量和轨枕间距也对加速度有影响。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CONNOLLY D P, MARECKI G P, KOUROUSSIS G, et al. The growth of railway ground vibration problems—A review [J]. Science of the Total Environment, 2016, 568: 1276–1282. DOI: https://doi.org/10.1016/j.scitotenv.2015.09.101.

    Article  Google Scholar 

  2. ROSSI F, NICOLINI A. A simple model to predict train-induced vibration: Theoretical formulation and experimental validation [J]. Environmental Impact Assessment Review, 2003, 23(3): 305–322. DOI: https://doi.org/10.1016/S0195-9255(03)00005-2.

    Article  Google Scholar 

  3. DAI Jun, XU Zhao-dong, GAI Pan-pan, et al. Optimal design of tuned mass damper inerter with a Maxwell element for mitigating the vortex-induced vibration in bridges [J]. Mechanical Systems and Signal Processing, 2021, 148: 107180. DOI: https://doi.org/10.1016/j.ymssp.2020.107180.

    Article  Google Scholar 

  4. HALL L. Simulations and analyses of train-induced ground vibrations in finite element models [J]. Soil Dynamics and Earthquake Engineering, 2003, 23(5): 403–413. DOI: https://doi.org/10.1016/S0267-7261(02)00209-9.

    Article  Google Scholar 

  5. TAKEMIYA H. Simulation of track-ground vibrations due to a high-speed train: The case of X-2000 at Ledsgard [J]. Journal of Sound and Vibration, 2003, 261(3): 503–526. DOI: https://doi.org/10.1016/S0022-460X(02)01007-6.

    Article  Google Scholar 

  6. DITZEL A, HERMAN G C. The influence of a rail embankment on the vibrations generated by moving trains [J]. Journal of Sound and Vibration, 2004, 271(3–5): 937–957. DOI: https://doi.org/10.1016/S0022-460X(03)00772-7.

    Article  Google Scholar 

  7. CELEBI E. Three-dimensional modelling of train-track and sub-soil analysis for surface vibrations due to moving loads [J]. Applied Mathematics and Computation, 2006, 179(1): 209–230. DOI: https://doi.org/10.1016/j.amc.2005.11.095.

    Article  MathSciNet  MATH  Google Scholar 

  8. GALVÍN P, DOMÍNGUEZ J. Analysis of ground motion due to moving surface loads induced by high-speed trains [J]. Engineering Analysis With Boundary Elements, 2007, 31(11): 931–941. DOI: https://doi.org/10.1016/j.enganabound.2007.03.003.

    Article  MATH  Google Scholar 

  9. CAI Yuan-qiang, SUN Hong-lei, XU Chang-jie. Three-dimensional analyses of dynamic responses of track-ground system subjected to a moving train load [J]. Computers & Structures, 2008, 86(7, 8): 816–824. DOI: https://doi.org/10.1016/j.compstruc.2007.07.001.

    Article  Google Scholar 

  10. ZHAI Wan-ming, HE Zhen-xing, SONG Xiao-lin. Prediction of high-speed train induced ground vibration based on train-track-ground system model [J]. Earthquake Engineering and Engineering Vibration, 2010, 9(4): 545–554. DOI: https://doi.org/10.1007/s11803-010-0036-y.

    Article  Google Scholar 

  11. EASON G. The stresses produced in a semi-infinite solid by a moving surface force [J]. International Journal of Engineering Science, 1965, 2(6): 581–609. DOI: https://doi.org/10.1016/0020-7225(65)90038-8.

    Article  MATH  Google Scholar 

  12. KRYLOV V V. Generation of ground vibrations by superfast trains [J]. Applied Acoustics, 1995, 44(2): 149–164. DOI: https://doi.org/10.1016/0003-682X(95)91370-I.

    Article  Google Scholar 

  13. THOMPSON D J, KOUROUSSIS G, NTOTSIOS E. Modelling, simulation and evaluation of ground vibration caused by rail vehicles [J]. Vehicle System Dynamics, 2019, 57(7): 936–983. DOI: https://doi.org/10.1080/00423114.2019.1602274.

    Article  Google Scholar 

  14. CONNOLLY D P, MARECKI G P, KOUROUSSIS G, et al. The growth of railway ground vibration problems—A review [J]. Science of the Total Environment, 2016, 568: 1276–1282. DOI: https://doi.org/10.1016/j.scitotenv.2015.09.101.

    Article  Google Scholar 

  15. QU H, DENG Yuan-yuan, HU Qin-di, et al. Seismic earth pressure on embankment gravity retaining wall with nonuniform slope [J]. Geomechanics and Engineering, 2021, 26: 415. DOI: https://doi.org/10.12989/GAE.2021.26.5.415.

    Google Scholar 

  16. WANG J, ZENG Xiang-wu. Numerical simulations of vibration attenuation of high-speed train foundations with varied trackbed underlayment materials [J]. Journal of Vibration and Control, 2004, 10(8): 1123–1136. DOI: https://doi.org/10.1177/1077546304043268.

    Article  Google Scholar 

  17. BIAN Xue-cheng, CHAO Chang, JIN Wan-feng, et al. A 2.5D finite element approach for predicting ground vibrations generated by vertical track irregularities [J]. Journal of Zhejiang University-Science A, 2011, 12(12): 885–894. DOI: https://doi.org/10.1631/jzus.a11gt012.

    Article  Google Scholar 

  18. GAO Guang-yun, YAO Shao-feng, YANG Jun, et al. Investigating ground vibration induced by moving train loads on unsaturated ground using 2.5D FEM [J]. Soil Dynamics and Earthquake Engineering, 2019, 124: 72–85. DOI: https://doi.org/10.1016/j.soildyn.2019.05.034.

    Article  Google Scholar 

  19. CONNOLLY D, GIANNOPOULOS A, FORDE M C. Numerical modelling of ground borne vibrations from high speed rail lines on embankments [J]. Soil Dynamics and Earthquake Engineering, 2013, 46: 13–19. DOI: https://doi.org/10.1016/j.soildyn.2012.12.003.

    Article  Google Scholar 

  20. OLIVIER B, CONNOLLY D P, ALVES COSTA P, et al. The effect of embankment on high speed rail ground vibrations [J]. International Journal of Rail Transportation, 2016, 4(4): 229–246. DOI: https://doi.org/10.1080/23248378.2016.1220844.

    Article  Google Scholar 

  21. KOUROUSSIS G, CONNOLLY D P, OLIVIER B, et al. Railway cuttings and embankments: Experimental and numerical studies of ground vibration [J]. Science of the Total Environment, 2016, 557–558: 110–122. DOI: https://doi.org/10.1016/j.scitotenv.2016.03.016.

    Article  Google Scholar 

  22. GAO Guang-yun, BI Jun-wei, CHEN Qing-sheng, et al. Analysis of ground vibrations induced by high-speed train moving on pile-supported subgrade using three-dimensional FEM [J]. Journal of Central South University, 2020, 27(8): 2455–2464. DOI: https://doi.org/10.1007/s11771-020-4461-4.

    Article  Google Scholar 

  23. DING Xuan-ming, QU Li-ming, YANG Jin-chuan, et al. Experimental study on the pile group-soil vibration induced by railway traffic under the inclined bedrock condition [J]. Acta Geotechnica, 2020, 15(12): 3613–3620. DOI: https://doi.org/10.1007/s11440-020-00990-0.

    Article  Google Scholar 

  24. DING Xuan-ming, LIU Han-long, YU Tao, et al. Nonlinear finite element analysis of effect of seismic waves on dynamic response of Shiziping Dam [J]. Journal of Central South University, 2013, 20(8): 2323–2332. DOI: https://doi.org/10.1007/s11771-013-1740-3.

    Article  Google Scholar 

  25. DING Xuan-ming, ZHENG Chang-jie, LIU Han-long. A theoretical analysis of vertical dynamic response of large-diameter pipe piles in layered soil [J]. Journal of Central South University, 2014, 21(8): 3327–3337. DOI: https://doi.org/10.1007/s11771-014-2306-8.

    Article  Google Scholar 

  26. ZHENG Chang-jie, LIU Han-long, DING Xuan-ming, et al. Vertical vibration of a large diameter pipe pile considering transverse inertia effect of pile [J]. Journal of Central South University, 2016, 23(4): 891–897. DOI: https://doi.org/10.1007/s11771-016-3136-7.

    Article  Google Scholar 

  27. QU Li-ming, DING Xuan-ming, KOUROUSSIS G, et al. Dynamic interaction of soil and end-bearing piles in sloping ground: Numerical simulation and analytical solution [J]. Computers and Geotechnics, 2021, 134: 103917. DOI: https://doi.org/10.1016/j.compgeo.2020.103917.

    Article  Google Scholar 

  28. QU Li-ming, YANG Chang-wei, DING Xuan-ming, et al. A continuum-based model on axial pile-head dynamic impedance in inhomogeneous soil [J]. Acta Geotechnica, 2021, 16(10): 3339–3353. DOI: https://doi.org/10.1007/s11440-021-01274-x.

    Article  Google Scholar 

  29. QU Li-ming, DING Xuan-ming, WU Chong-rong, et al. Effects of topography on dynamic responses of single piles under vertical cyclic loading [J]. Journal of Mountain Science, 2020, 17(1): 230–243. DOI: https://doi.org/10.1007/s11629-019-5533-5.

    Article  Google Scholar 

  30. WU Wen-bing, LIU Hao, YANG Xiao-yan, et al. New method to calculate apparent phase velocity of open-ended pipe pile [J]. Canadian Geotechnical Journal, 2020, 57(1): 127–138. DOI: https://doi.org/10.1139/cgj-2018-0816.

    Article  Google Scholar 

  31. KOUROUSSIS G, VERLINDEN O, CONTI C. Influence of some vehicle and track parameters on the environmental vibrations induced by railway traffic [J]. Vehicle System Dynamics, 2012, 50(4): 619–639. DOI: https://doi.org/10.1080/00423114.2011.610897.

    Article  Google Scholar 

  32. KOUROUSSIS G, CONTI C, VERLINDEN O. Investigating the influence of soil properties on railway traffic vibration using a numerical model [J]. Vehicle System Dynamics, 2013, 51(3): 421–442. DOI: https://doi.org/10.1080/00423114.2012.734627.

    Article  Google Scholar 

  33. LI Li-chen, WU Wen-bing, LIU Hao, et al. DEM analysis of the plugging effect of open-ended pile during the installation process [J]. Ocean Engineering, 2021, 220: 108375. DOI: https://doi.org/10.1016/j.oceaneng.2020.108375.

    Article  Google Scholar 

  34. YANG Y B, WU Y S. Transmission of vibrations from high speed trains through viaducts and foundations to the ground [J]. Journal of the Chinese Institute of Engineers, 2005, 28(2): 251–266. DOI: https://doi.org/10.1080/02533839.2005.9670992.

    Article  Google Scholar 

  35. ZHANG Yun-peng, LIU Hao, WU Wen-bing, et al. A 3D analytical model for distributed low strain test and parallel seismic test of pipe piles [J]. Ocean Engineering, 2021, 225: 108828. DOI: https://doi.org/10.1016/j.oceaneng.2021.108828.

    Article  Google Scholar 

  36. QU Li-ming, DING Xuan-ming, ZHENG Chang-jie, et al. Numerical and test study on vertical vibration characteristics of pile group in slope soil topography [J]. Earthquake Engineering and Engineering Vibration, 2021, 20(2): 377–390. DOI: https://doi.org/10.1007/s11803-021-2026-7.

    Article  Google Scholar 

  37. QU Hong-lue, LUO Hao, HU Huan-guo, et al. Dynamic response of anchored sheet pile wall under ground motion: Analytical model with experimental validation [J]. Soil Dynamics and Earthquake Engineering, 2018, 115: 896–906. DOI: https://doi.org/10.1016/j.soildyn.2017.09.015.

    Article  Google Scholar 

  38. PENG Yu, LIU Han-long, LI Chi, et al. The detailed particle breakage around the pile in coral sand [J]. Acta Geotechnica, 2021, 16(6): 1971–1981. DOI: https://doi.org/10.1007/s11440-020-01089-2.

    Article  Google Scholar 

  39. LI Li-chen, WU Wen-bing, LIU Hao, et al. DEM analysis of the plugging effect of open-ended pile during the installation process [J]. Ocean Engineering, 2021, 220: 108375. DOI: https://doi.org/10.1016/j.oceaneng.2020.108375.

    Article  Google Scholar 

  40. BISHT V, SALGADO R, PREZZI M. Simulating penetration problems in incompressible materials using the material point method [J]. Computers and Geotechnics, 2021, 133: 103593. DOI: https://doi.org/10.1016/j.compgeo.2020.103593.

    Article  Google Scholar 

  41. XUE Fu-chu. Attenuations of acceleration spectra of highspeed railway embankment subjected to moving loads [J]. Rock & Soil Mechanics, 2015, 36: 445–451. DOI: https://doi.org/10.16285/j.rsm.2015.S1.077. (in Chinese)

    Google Scholar 

  42. XUE Fu-chun. Investigation of rolling wheel — rail contact using an elaborate numerical simulation [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(10): 1198–1209. DOI: https://doi.org/10.1177/0954409719886171.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by YANG Chang-wei, DING Xuan-ming, and QU Li-ming. QU Li-ming and YUAN Cheng provided the experimental data, and analyzed the measured data. YANG Chang-wei, QU Li-ming, and YUAN Cheng established the model and calculated the earth pressure and acceleration. QU Li-ming, YUAN Cheng and LIU Wei-bin analyzed the calculated results. The initial draft of the manuscript was written by YANG Chang-wei, QU Li-ming, and YUAN Cheng. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Li-ming Qu  (瞿立明).

Additional information

Conflict of interest

YANG Chang-wei, YUAN Cheng, QU Li-ming, DING Xuan-ming and LIU Wei-bin declare that they have no conflict of interest.

Foundation item: Project(2018YFE0207100) supported by the National Key R&D Program of China; Project(52078426) supported by the National Natural Science Fundation of China; Projects(2020YJ0253, 2020YFSY0060, 2019JDRC0133, 2019JDRC0134) supported by the Sichuan Provincial Science and Technology Support Project, China; Project(K2019G009) supported by the Science and Technology Research and Development Plan of China National Railway Corporation Limited; Projects (SY2016G003, N2020T004) supported by the China National Railway Group Co. Ltd. Scientific Research Project; Project(LNTCCMA-20210109) supported by the Key Laboratory of New Technology for Construction of Cities in Mountain Area, China; Project(2021M692689) supported by the China Postdoctoral Science Foundation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Cw., Yuan, C., Qu, Lm. et al. Experimental and numerical studies on vibration characteristics of a railway embankment. J. Cent. South Univ. 29, 1641–1652 (2022). https://doi.org/10.1007/s11771-022-5030-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5030-9

Key words

关键词

Navigation