Skip to main content
Log in

Hourly traffic flow forecasting using a new hybrid modelling method

一种基于新型混合模型的小时交通流预测方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Short-term traffic flow forecasting is a significant part of intelligent transportation system. In some traffic control scenarios, obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures. In hence, it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning. This paper proposed a new hybrid model for traffic flow forecasting, which is composed of the variational mode decomposition (VMD) method, the group method of data handling (GMDH) neural network, bi-directional long and short term memory (BILSTM) network and ELMAN network, and is optimized by the imperialist competitive algorithm (ICA) method. To illustrate the performance of the proposed model, there are several comparative experiments between the proposed model and other models. The experiment results show that 1) BILSTM network, GMDH network and ELMAN network have better predictive performance than other single models; 2) VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model. The effect of VMD method is better than that of EEMD method and FEEMD method. To conclude, the proposed model which is made up of the VMD method, the ICA method, the BILSTM network, the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series.

摘要

短期交通流量预测是智能交通系统的重要组成部分. 在某些交通控制场景中, 提前获取未来的 交通流量, 有利于公路管理部门有足够的时间制定相应的交通流量控制措施. 因此, 建立一种准确的 短期交通流量预测方法具有重要的意义, 能够为高峰交通流量警告提供依据. 本文提出了一种新的交 通流量混合预测模型VMD-ICA-GMDH-BILSTM-ELMAN, 该模型由VMD算法对历史交通流序列进行 分解, 并利用ICA算法对GMDH-BILSTM-ELMAN集成的网络模型参数进行优化. 为了验证此模型的 预测性能, 在本文所提出的模型和其他模型之间进行了多次比较实验. 实验结果表明; 1) BILSTM网 络, GMDH网络和ELMAN网络具有比其他单个模型更好的预测性能. 2) VMD分解方法的加入可以 显著改善ICA-GMDH-BILSTM-ELMAN模型的预测性能, 且VMD方法的效果优于EEMD和FEEMD. 综上所述, 由VMD分解, ICA优化, BILSTM网络, GMDH网络和ELMAN网络组成的预测模型, 对 交通流序列具有精确的短期预测性能.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

VMD:

Variational mode decomposition

GMDH:

The group method of data handling

BILSTM:

Bi-directional long and short term memory

ICA:

Imperialist competitive algorithm

MAE:

Mean absolute error

MAPE:

Mean absolute percentage error

RMSE:

Root mean square error

References

  1. TANG Yong, ZHANG Cong-zhe, GU Ren-shu, et al. Vehicle detection and recognition for intelligent traffic surveillance system [J]. Multimedia Tools and Applications, 2017, 76(4): 5817–5832. DOI: https://doi.org/10.1007/s11042-015-2520-x.

    Article  Google Scholar 

  2. LI Wan, WANG Jing-xing, FAN Rong, et al. Short-term traffic state prediction from latent structures: Accuracy vs. efficiency [J]. Transportation Research Part C: Emerging Technologies, 2020, 111: 72–90. DOI: https://doi.org/10.1016/j.trc.2019.12.007.

    Article  Google Scholar 

  3. WANG Run-jie, SHI Wen-zhong, LIU Xiang-lei, et al. An adaptive cutoff frequency selection approach for fast Fourier transform method and its application into short-term traffic flow forecasting [J]. ISPRS International Journal of Geo-Information, 2020, 9(12): 731. DOI: https://doi.org/10.3390/ijgi9120731.

    Article  Google Scholar 

  4. XIAO Xin-ping, YANG Jin-wei, MAO Shu-hua, et al. An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow [J]. Applied Mathematical Modelling, 2017, 51: 386–404. DOI: https://doi.org/10.1016/j.apm.2017.07.010.

    Article  MathSciNet  MATH  Google Scholar 

  5. LIPPI M, BERTINI M, FRASCONI P. Short-term traffic flow forecasting: An experimental comparison of time-series analysis and supervised learning [J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(2): 871–882. DOI: https://doi.org/10.1109/TITS.2013.2247040.

    Article  Google Scholar 

  6. SMITH B L, WILLIAMS B M, OSWALD R K. Comparison of parametric and nonparametric models for traffic flow forecasting [J]. Transportation Research Part C: Emerging Technologies, 2002, 10(4): 303–321. DOI: https://doi.org/10.1016/S0968-090X(02)00009-8.

    Article  Google Scholar 

  7. QU Li-cheng, LI Wei, LI Wen-jing, et al. Daily long-term traffic flow forecasting based on a deep neural network [J]. Expert Systems with Applications, 2019, 121: 304–312. DOI: https://doi.org/10.1016/j.eswa.2018.12.031.

    Article  Google Scholar 

  8. ZHOU Teng, HAN Guo-qiang, XU Xue-miao, et al. Δ-agree AdaBoost stacked autoencoder for short-term traffic flow forecasting [J]. Neurocomputing, 2017, 247: 31–38. DOI: https://doi.org/10.1016/j.neucom.2017.03.049.

    Article  Google Scholar 

  9. YANG Hao-fan, DILLON T S, CHANG E, et al. Optimized configuration of exponential smoothing and extreme learning machine for traffic flow forecasting [J]. IEEE Transactions on Industrial Informatics, 2019, 15(1): 23–34. DOI: https://doi.org/10.1109/TII.2018.2876907.

    Article  Google Scholar 

  10. CHEN Xiao-bo, CAI Xin-wen, LIANG Jun, et al. Ensemble learning multiple LSSVR with improved harmony search algorithm for short-term traffic flow forecasting [J]. IEEE Access, 2018, 6: 9347–9357. DOI: https://doi.org/10.1109/ACCESS.2018.2805299.

    Article  Google Scholar 

  11. BISHOP C H, ETHERTON B J, MAJUMDAR S J. Adaptive sampling with the ensemble transform Kalman filter. part I: Theoretical aspects [J]. Monthly Weather Review, 2001, 129(3): 420–436. DOI: https://doi.org/10.1175/1520-0493(2001)129<0420:aswtet>2.0.co;2.

    Article  Google Scholar 

  12. GOLOVAN A, MATASOV A. The Kalman-Bucy filter in the guaranteed estimation problem [J]. IEEE Transactions on Automatic Control, 1994, 39(6): 1282–1286. DOI: https://doi.org/10.1109/9.293197.

    Article  MathSciNet  MATH  Google Scholar 

  13. SINGH A K. Major development under Gaussian filtering since unscented Kalman filter [J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7(5): 1308–1325. DOI: https://doi.org/10.1109/JAS.2020.1003303.

    MathSciNet  Google Scholar 

  14. SHARMA B, KUMAR S, TIWARI P, et al. ANN based short-term traffic flow forecasting in undivided two lane highway [J]. Journal of Big Data, 2018, 5: 48. DOI: https://doi.org/10.1186/s40537-018-0157-0.

    Article  Google Scholar 

  15. LIU Hui, MI Xi-wei, LI Yan-fei. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network [J]. Energy Conversion and Management, 2018, 156: 498–514. DOI: https://doi.org/10.1016/j.enconman.2017.11.053.

    Article  Google Scholar 

  16. ZHAO Zheng, CHEN Wei-hai, WU Xing-ming, et al. LSTM network: A deep learning approach for short-term traffic forecast [J]. IET Intelligent Transport Systems, 2017, 11(2): 68–75. DOI: https://doi.org/10.1049/iet-its.2016.0208.

    Article  Google Scholar 

  17. WANG Huai-zhi, LI Gang-qiang, WANG Gui-bin, et al. Deep learning based ensemble approach for probabilistic wind power forecasting [J]. Applied Energy, 2017, 188: 56–70. DOI: https://doi.org/10.1016/j.apenergy.2016.11.111.

    Article  Google Scholar 

  18. POLSON N G, SOKOLOV V O. Deep learning for short-term traffic flow prediction [J]. Transportation Research Part C: Emerging Technologies, 2017, 79: 1–17. DOI: https://doi.org/10.1016/j.trc.2017.02.024.

    Article  Google Scholar 

  19. CLARK S. Traffic prediction using multivariate nonparametric regression [J]. Journal of Transportation Engineering, 2003, 129(2): 161–168. DOI: https://doi.org/10.1061/(asce)0733-947x(2003)129:2(161).

    Article  Google Scholar 

  20. DURAKU R K, RAMADANI R. Development of traffic volume forecasting using multiple regression analysis and artificial neural network [J]. Civil Engineering Journal, 2019, 5(8): 1698–1713. DOI: https://doi.org/10.28991/cej-2019-03091364.

    Article  Google Scholar 

  21. ZHAN Xing-bin, ZHANG Shuai-chao, SZETO W Y, et al. Multi-step-ahead traffic speed forecasting using multi-output gradient boosting regression tree [J]. Journal of Intelligent Transportation Systems, 2020, 24(2): 125–141. DOI: https://doi.org/10.1080/15472450.2019.1582950.

    Article  Google Scholar 

  22. XU Hai-bo, JIANG Cheng-shun. Deep belief network-based support vector regression method for traffic flow forecasting [J]. Neural Computing and Applications, 2020, 32(7): 2027–2036. DOI: https://doi.org/10.1007/s00521-019-04339-x.

    Article  Google Scholar 

  23. LUO Chuan, HUANG Chi, CAO Jin-de, et al. Short-term traffic flow prediction based on least square support vector machine with hybrid optimization algorithm [J]. Neural Processing Letters, 2019, 50(3): 2305–2322. DOI: https://doi.org/10.1007/s11063-019-09994-8.

    Article  Google Scholar 

  24. ZHOU Teng, JIANG Da-zhi, LIN Zhi-zhe, et al. Hybrid dual Kalman filtering model for short-term traffic flow forecasting [J]. IET Intelligent Transport Systems, 2019, 13(6): 1023–1032. DOI: https://doi.org/10.1049/iet-its.2018.5385.

    Article  Google Scholar 

  25. CAI Wei-hong, YANG Jun-jie, YU Yi-dan, et al. PSO-ELM: A hybrid learning model for short-term traffic flow forecasting [J]. IEEE Access, 2020, 8: 6505–6514. DOI: https://doi.org/10.1109/ACCESS.2019.2963784.

    Article  Google Scholar 

  26. ZHANG Hong, WANG Xiao-ming, CAO Jie, et al. A hybrid short-term traffic flow forecasting model based on time series multifractal characteristics [J]. Applied Intelligence, 2018, 48(8): 2429–2440. DOI: https://doi.org/10.1007/s10489-017-1095-9.

    Article  Google Scholar 

  27. XIAO Xin-ping, DUAN Hui-ming, WEN Jiang-hui. A novel car-following inertia gray model and its application in forecasting short-term traffic flow [J]. Applied Mathematical Modelling, 2020, 87: 546–570. DOI: https://doi.org/10.1016/j.apm.2020.06.020.

    Article  MathSciNet  MATH  Google Scholar 

  28. MA Xiao-lei, YU Hai-yang, WANG Yun-peng, et al. Large-scale transportation network congestion evolution prediction using deep learning theory [J]. PLoS One, 2015, 10(3): e0119044. DOI: https://doi.org/10.1371/journal.pone.0119044.

    Article  Google Scholar 

  29. ZHU Hai-long, XIE Ya-wen, HE Wei, et al. A novel traffic flow forecasting method based on RNN-GCN and BRB [J]. Journal of Advanced Transportation, 2020: 7586154. DOI: https://doi.org/10.1155/2020/7586154.

  30. HU Wen-bin, YAN Li-ping, LIU Kai-zeng, et al. A short-term traffic flow forecasting method based on the hybrid PSO-SVR [J]. Neural Processing Letters, 2016, 43(1): 155–172. DOI: https://doi.org/10.1007/s11063-015-9409-6.

    Article  Google Scholar 

  31. LI Lin-chao, QIN Ling-qiao, QU Xu, et al. Day-ahead traffic flow forecasting based on a deep belief network optimized by the multi-objective particle swarm algorithm [J]. Knowledge-Based Systems, 2019, 172: 1–14. DOI: https://doi.org/10.1016/j.knosys.2019.01.015.

    Article  Google Scholar 

  32. LIU Hui, JIN Kai-rong, DUAN Zhu. Air PM2.5 concentration multi-step forecasting using a new hybrid modeling method: Comparing cases for four cities in China [J]. Atmospheric Pollution Research, 2019, 10(5): 1588–1600. DOI: https://doi.org/10.1016/j.apr.2019.05.007.

    Article  Google Scholar 

  33. MOHANTY S, GUPTA K K, RAJU K S. Hurst based vibro-acoustic feature extraction of bearing using EMD and VMD [J]. Measurement, 2018, 117: 200–220. DOI: https://doi.org/10.1016/j.measurement.2017.12.012.

    Article  Google Scholar 

  34. DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531–544. DOI: https://doi.org/10.1109/TSP.2013.2288675.

    Article  MathSciNet  MATH  Google Scholar 

  35. DAG O, YOZGATLIGIL C. GMDH: An R package for short term forecasting via GMDH-type neural network algorithms [J]. The R Journal, 2016, 8(1): 379. DOI: https://doi.org/10.32614/rj-2016-028.

    Article  Google Scholar 

  36. ABDEL-AAL R E, ELHADIDY M A, SHAAHID S M. Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks [J]. Renewable Energy, 2009, 34(7): 1686–1699. DOI: https://doi.org/10.1016/j.renene.2009.01.001.

    Article  Google Scholar 

  37. ASHRAFZADEH A, KIŞI O, AGHELPOUR P, et al. Comparative study of time series models, support vector machines, and GMDH in forecasting long-term evapotranspiration rates in northern Iran [J]. Journal of Irrigation and Drainage Engineering, 2020, 146(6): 04020010. DOI: https://doi.org/10.1061/(asce)ir.1943-4774.0001471.

    Article  Google Scholar 

  38. JEDDI S, SHARIFIAN S. A hybrid wavelet decomposer and GMDH-ELM ensemble model for Network function virtualization workload forecasting in cloud computing [J]. Applied Soft Computing, 2020, 88: 105940. DOI: https://doi.org/10.1016/j.asoc.2019.105940.

    Article  Google Scholar 

  39. SOHANI A, SAYYAADI H, HOSEINPOORI S. Modeling and multi-objective optimization of an M-cycle cross-flow indirect evaporative cooler using the GMDH type neural network [J]. International Journal of Refrigeration, 2016, 69: 186–204. DOI: https://doi.org/10.1016/j.ijrefrig.2016.05.011.

    Article  Google Scholar 

  40. NGUYEN T N, LEE S, NGUYEN-XUAN H, et al. A novel analysis-prediction approach for geometrically nonlinear problems using group method of data handling [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 354: 506–526. DOI: https://doi.org/10.1016/j.cma.2019.05.052.

    Article  MathSciNet  MATH  Google Scholar 

  41. de GIORGI M G, MALVONI M, CONGEDO P M. Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine [J]. Energy, 2016, 107: 360–373. DOI: https://doi.org/10.1016/j.energy.2016.04.020.

    Article  Google Scholar 

  42. XU Li-xiang, WANG Xiao-feng, BAI Lu, et al. Probabilistic SVM classifier ensemble selection based on GMDH-type neural network [J]. Pattern Recognition, 2020, 106: 107373. DOI: https://doi.org/10.1016/j.patcog.2020.107373.

    Article  Google Scholar 

  43. NAJAFZADEH M, AZAMATHULLA H M. Group method of data handling to predict scour depth around bridge piers [J]. Neural Computing and Applications, 2013, 23(7, 8): 2107–2112. DOI: https://doi.org/10.1007/s00521-012-1160-6.

    Article  Google Scholar 

  44. NAJAFZADEH M, AZAMATHULLA H M. Group method of data handling to predict scour depth around bridge piers [J]. Neural Computing and Applications, 2013, 23(7, 8): 2107–2112. DOI: https://doi.org/10.1007/s00521-012-1160-6.

    Article  Google Scholar 

  45. ATASHPAZ-GARGARI E, LUCAS C. Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition [J]. 2007 IEEE Congress on Evolutionary Computation, 2007: 4661–4667. DOI: https://doi.org/10.1109/CEC.2007.4425083.

  46. CHEN Tao, XU Rui-feng, HE Yu-lan, et al. Improving sentiment analysis via sentence type classification using BiLSTM-CRF and CNN [J]. Expert Systems With Applications, 2017, 72: 221–230. DOI: https://doi.org/10.1016/j.eswa.2016.10.065.

    Article  Google Scholar 

  47. LIANG Dan-dan, LIANG Hua-gang, YU Zhen-bo, et al. Deep convolutional BiLSTM fusion network for facial expression recognition [J]. The Visual Computer, 2020, 36(3): 499–508. DOI: https://doi.org/10.1007/s00371-019-01636-3.

    Article  Google Scholar 

  48. SUN Jin-long, SHI Wen-juan, YANG Zhu-tian, et al. Behavioral modeling and linearization of wideband RF power amplifiers using BiLSTM networks for 5G wireless systems [J]. IEEE Transactions on Vehicular Technology, 2019, 68(11): 10348–10356. DOI: https://doi.org/10.1109/TVT.2019.2925562.

    Article  Google Scholar 

  49. DING Shuo, WU Qing-hui, CHANG Xiao-heng, et al. Prediction of laboratory equipment demand based on grey relation analysis and Elman neural network [C]// 2017 10th International Symposium on Computational Intelligence and Design (ISCID). 2017, Hangzhou, China: IEEE, 2017: 408–411. DOI: https://doi.org/10.1109/ISCID.2017.103.

    Google Scholar 

  50. LIU Hui, TIAN Hong-qi, LIANG Xi-feng, et al. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks [J]. Applied Energy, 2015, 157: 183–194. DOI: https://doi.org/10.1016/j.apenergy.2015.08.014.

    Article  Google Scholar 

  51. LIU Hui, DUAN Zhu, CHEN Chao. A hybrid multi-resolution multi-objective ensemble model and its application for forecasting of daily PM2.5 concentrations [J]. Information Sciences, 2020, 516: 266–292. DOI: https://doi.org/10.1016/j.ins.2019.12.054.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-fei Li  (李燕飞).

Additional information

Foundation item

Project(61873283) supported by the National Natural Science Foundation of China; Project(KQ1707017) supported by the Changsha Science & Technology Project, China; Project(2019CX005) supported by the Innovation Driven Project of the Central South University, China

Contributors

LIU Hui performed proposing forecasting ideas, writing original draft and review. ZHANG Xin-yu performed writing original draft, review, editing and experimental validation. YANG Yu-xiang and YU Cheng-qing replied to reviewers’ comments and revised the final version. LI Yan-fei provided the concept and completed all the submission.

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zhang, Xy., Yang, Yx. et al. Hourly traffic flow forecasting using a new hybrid modelling method. J. Cent. South Univ. 29, 1389–1402 (2022). https://doi.org/10.1007/s11771-022-5000-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-5000-2

Key words

关键词

Navigation