Skip to main content
Log in

Generalized plasticity model considering grain crushing and anisotropy for rockfill materials

考虑颗粒破碎与各向异性的堆石料广义塑型模型

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Rockfill materials have been widely used in the construction of rockfill dam, railway and highway subgrade due to its high filling density, good compaction performance, strong water permeability, small settlement deformation and high bearing capacity. A reasonable constitutive model for rockfill materials is very important for engineering computation and analysis, and has a great development space. Based on the crushing stress and spatial mobilized plane (SMP), a state parameter that can comprehensively reflect the anisotropy and grain crushing is proposed. This state parameter is used to improve the MPZ model (a modifed Zienkiewicz III model), so that a generalized plastic model is constructed to describe the stress and deformation characteristics of rockfill materials in engineering. The validity of the developed model is verified by a series of conventional triaxial tests with different inclination angles of the compaction plane. The variation trend of the constructed anisotropy index ω can reflect the non monotonic variation of the deformation and strength of rockfill with the direction angle of large principal stress, so the model can reflect the obvious difference caused by the initial anisotropy of rockfill on the mechanical properties.

摘要

堆石料以其填筑密度高、压实性能好、透水性强、沉降变形小、承载力高等优点, 在堆石坝、 铁路、公路路基等工程建设中得到广泛应用. 合理的堆石料本构模型对工程计算和分析具有重要意 义, 且目前仍具有很大的发展空间. 基于破碎应力和空间滑动面(SMP)的概念, 提出了一个能综合反 映颗粒破碎和各向异性的状态参数. 利用该状态参数对修正ZienkiewiczIII模型(MPZ模型)进行了改进, 构造了一个能够描述堆石料应力变形工程特性的广义塑性模型. 本文通过一系列不同压实面倾角的常 规三轴试验, 验证了该模型的有效性. 由于所构造的各向异性指标ω 的变化趋势能够反映堆石料的变 形和强度随大主应力方向角非单调变化的特征, 故该模型可以反映堆石料初始各向异性对力学特性造 成的明显差异.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Reference

  1. ZHAO Chong-bin. Physical and chemical dissolution front instability in porous media: Theoretical analyses and computational simulations [M]. Berlin: Springer, 2014: 354. https://link.springer.com/book/10.1007%2F978-3-319-08461-9.

    Google Scholar 

  2. ZHAO Chong-bin. Dynamic and transient infinite elements: Theory and geophysical, geotechnical and geoenvironmental applications [M]. Berlin: Springer, 2009: 259. https://www.springer.com/gp/book/9783642008450.

    Book  MATH  Google Scholar 

  3. ZHAO Chong-bin, HOBBS B E, ORD A. Fundamentals of computational geoscience: Numerical methods and algorithms [M]. Berlin: Springer, 2009: 285. http://www.gbv.de/dms/goettingen/584426224.pdf.

    MATH  Google Scholar 

  4. SYMES M J P R, GENS A, HIGHT D W. Undrained anisotropy and principal stress rotation in saturated sand [J]. Géotechnique, 1984, 34(1): 11–27. DOI: https://doi.org/10.1680/geot.1984.34.1.11.

    Article  Google Scholar 

  5. ABELEV A V, LADE P V. Effects of cross anisotropy on three-dimensional behavior of sand. I: Stress—strain behavior and shear banding [J]. Journal of Engineering Mechanics, 2003, 129(2): 160–166. DOI: https://doi.org/10.1061/(asce)0733-9399(2003)129:2(160).

    Article  Google Scholar 

  6. GEORGIANNOU V N, KONSTADINOU M, TRIANTAFYLLOS P. Sand behavior under stress states involving principal stress rotation [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(6): 04018028. DOI: https://doi.org/10.1061/(asce)gt.1943-5606.0001878.

    Article  Google Scholar 

  7. ZAMANIAN M, MOLLAEI-ALAMOUTI V, PAYAN M. Directional strength and stiffness characteristics of inherently anisotropic sand: The influence of deposition inclination [J]. Soil Dynamics and Earthquake Engineering, 2020, 137: 106304. DOI: https://doi.org/10.1016/j.soildyn.2020.106304.

    Article  Google Scholar 

  8. ARTHUR J R F, MENZIES B K. Inherent anisotropy in a sand [J]. Géotechnique, 1972, 22(1): 115–128. DOI: https://doi.org/10.1680/geot.1972.22.1.115.

    Article  Google Scholar 

  9. ODA M, KOISHIKAWA I, HIGUCHI T. Experimental study of anisotropic shear strength of sand by plane strain test [J]. Soils and Foundations, 1978, 18(1): 25–38. DOI: https://doi.org/10.3208/sandf1972.18.25.

    Article  Google Scholar 

  10. ZHANG Xiang-tao, GAO Yi-zhao, WANG Yuan, et al. Experimental study on compaction-induced anisotropic mechanical property of rockfill material [J]. Frontiers of Structural and Civil Engineering, 2021, 15(1): 109–123. DOI: https://doi.org/10.1007/s11709-021-0693-0.

    Article  Google Scholar 

  11. MARSAL R J. Large scale testing of rockfill materials [J]. Journal of the Soil Mechanics and Foundations Division, 1967, 93(2): 27–43. DOI: https://doi.org/10.1061/jsfeaq.0000958.

    Article  Google Scholar 

  12. XIAO Yang, LIU Han-long, DING Xuan-ming, et al. Influence of particle breakage on critical state line of rockfill material [J]. International Journal of Geomechanics, 2016, 16(1): 04015031. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0000538.

    Article  Google Scholar 

  13. LIU Meng-cheng, GAO Yu-feng, LIU Han-long. An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear friction and particle breakage [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(9): 935–960. DOI: https://doi.org/10.1002/nag.2243.

    Article  Google Scholar 

  14. HARDIN B O. Crushing of soil particles [J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177–1192. DOI: https://doi.org/10.1061/(asce)0733-9410(1985)111:10(1177).

    Article  Google Scholar 

  15. ZIENKIEWICZ O C, MROZ Z. Generalized plasticity formulation and applications to geomechanics [C]// DESAI C S, GALAGHER R H. Mechanics of Engineering Materials. Chichester: Wiley, 1984: 655–679. https://www.researchgate.net/publication/284254804.

    Google Scholar 

  16. PASTOR M, ZIENKIEWICZ O C, CHAN A H C. Generalized plasticity and the modelling of soil behaviour [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1990, 14(3): 151–190. DOI: https://doi.org/10.1002/nag.1610140302.

    Article  MATH  Google Scholar 

  17. KHOEI A R, AZAMI A R, HAERI S M. Implementation of plasticity based models in dynamic analysis of earth and rockfill dams: A comparison of Pastor-Zienkiewicz and cap models [J]. Computers and Geotechnics, 2004, 31(5): 384–409. DOI: https://doi.org/10.1016/j.compgeo.2004.04.003.

    Article  Google Scholar 

  18. XU Bin, ZOU De-gao, KONG Xian-jing, et al. Dynamic Damage evaluation on the slabs of the concrete faced rockfill dam with the plastic-damage model [J]. Computers and Geotechnics, 2015, 65: 258–265. DOI: https://doi.org/10.1016/j.compgeo.2015.01.003.

    Article  Google Scholar 

  19. LIU Meng-cheng, GAO Yu-feng. Constitutive modeling of coarse-grained materials incorporating the effect of particle breakage on critical state behavior in a framework of generalized plasticity [J]. International Journal of Geomechanics, 2017, 17(5): 04016113. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0000759.

    Article  Google Scholar 

  20. DONG Wei-xin. Fluid-solid coupling elastoplastic seismic dynamic response analysis of high core rockfill dam [D]. Beijing: Tsinghua University, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10003-1016712265.htm. (in Chinese)

    Google Scholar 

  21. YAO Yang-ping, WANG Nai-dong. Transformed stress method for generalizing soil constitutive models [J]. Journal of Engineering Mechanics, 2014, 140(3): 614–629. DOI: https://doi.org/10.1061/(asce)em.1943-7889.0000685.

    Article  Google Scholar 

  22. TIAN Yu, YAO Yang-ping. A simple method to describe three-dimensional anisotropic failure of soils [J]. Computers and Geotechnics, 2017, 92: 210–219. DOI: https://doi.org/10.1016/j.compgeo.2017.08.004.

    Article  Google Scholar 

  23. LIU Si-hong, SHAO Dong-chen, SHEN Chao-min, et al. Microstructure-based elastoplastic constitutive model for coarse-grained materials [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 777–783.

    Google Scholar 

  24. HARDIN B O, RICHART F E. Elastic wave velocities in granular soils [J]. Journal of the Soil Mechanics and Foundations Division, 1963, 89(1): 33–65. DOI: https://doi.org/10.1061/jsfeaq.0000493.

    Article  Google Scholar 

  25. ROSCOE K H, SCHOFIELD A N, WROTH C P. On the yielding of soils [J]. Géotechnique, 1958, 8(1): 22–53. DOI: https://doi.org/10.1680/geot.1958.8.1.22.

    Article  Google Scholar 

  26. LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils [J]. Géotechnique, 2000, 50(4): 449–460. DOI: https://doi.org/10.1680/geot.2000.50.4.449.

    Article  Google Scholar 

  27. BEEN K, JEFFERIES M G. A state parameter for sands [J]. Géotechnique, 1985, 35(2): 99–112. DOI: https://doi.org/10.1680/geot.1985.35.2.99.

    Article  Google Scholar 

  28. LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils [J]. Géotechnique, 2000, 50(4): 449–460. DOI: https://doi.org/10.1680/geot.2000.50.4.449.

    Article  Google Scholar 

  29. LING H I, YANG Song-tao. Unified sand model based on the critical state and generalized plasticity [J]. Journal of Engineering Mechanics, 2006, 132(12): 1380–1391. DOI: https://doi.org/10.1061/(asce)0733-9399(2006)132:12(1380).

    Article  Google Scholar 

  30. MANZANAL D, PASTOR M, MERODO J A F. Generalized plasticity state parameter-based model for saturated and unsaturated soils. Part II: Unsaturated soil modeling [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(18): 1899–1917. DOI: https://doi.org/10.1002/nag.983.

    Article  Google Scholar 

  31. AKHAVEISSY A H. Analysis of tunnel and super structures for excavation [J]. Scientia Iranica, 2011, 18(1): 1–8. DOI: https://doi.org/10.1016/j.scient.2011.03.001.

    Article  Google Scholar 

  32. WONG R K S, ARTHUR J R F. Induced and inherent anisotropy in sand [J]. Géotechnique, 1985, 35(4): 471–481. DOI: https://doi.org/10.1680/geot.1985.35.4.471.

    Article  Google Scholar 

  33. ODA M, NAKAYAMA H. Introduction of inherent anisotropy of soils in the yield function [M]// Studies in Applied Mechanics. Amsterdam: Elsevier, 1988: 81–90. DOI: https://doi.org/10.1016/b978-0-444-70523-5.50017-5.

    Google Scholar 

  34. TOBITA Y. Fabric tensors in constitutive equations for granular materials [J]. Soils and Foundations, 1989, 29(4): 91–104. DOI: https://doi.org/10.3208/sandf1972.29.4_91.

    Article  Google Scholar 

  35. MATSUOKA H, NAKAI T R. Stress-deformation and strength characteristics of soil under three different principal stresses [J]. Proceedings of the Japan Society of Civil Engineers, 1974, 1974(232): 59–70. DOI: https://doi.org/10.2208/jscej1969.1974.232_59.

    Article  Google Scholar 

  36. WANG Yuan, ZHANG Sheng, AO Da-hua, et al. Particle breakage characteristics of rockfills under complex stress paths [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 698–706.

    Google Scholar 

  37. LUO Ting, LIU Lin, YAO Yang-ping. Description of critical state for sands considering particle crushing [J]. Chinese Journal of Geotechnical Engineering, 2017, 39(4): 592–600.

    Google Scholar 

  38. YAO Yang-ping, LIU Lin, LUO Ting, et al. Unified hardening (UH) model for clays and sands [J]. Computers and Geotechnics, 2019, 110: 326–343. DOI: https://doi.org/10.1016/j.compgeo.2019.02.024.

    Article  Google Scholar 

  39. PESTANA J M, WHITTLE A J. Compression model for cohesionless soils [J]. Géotechnique, 1995, 45(4): 611–631. DOI: https://doi.org/10.1680/geot.1995.45.4.611.

    Article  Google Scholar 

  40. SHEN Chao-min, LIU Si-hong, WANG Liu-jiang, et al. Micromechanical modeling of particle breakage of granular materials in the framework of thermomechanics [J]. Acta Geotechnica, 2019, 14(4): 939–954. DOI: https://doi.org/10.1007/s11440-018-0692-z.

    Article  Google Scholar 

  41. NOVA R, WOOD D M. A constitutive model for sand in triaxial compression [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1979, 3(3): 255–278. DOI: https://doi.org/10.1002/nag.1610030305.

    Article  Google Scholar 

  42. ROSCO K H, BURLAND J B. On generalized stress strain behavior of wet clay [J]. Engineering Plasticity, 1968, 535–609. https://www.researchgate.net/publication/26492 1746.

  43. FU Zhong-zhi, CHEN Sheng-shui, SHI Bei-xiao. Large-scale triaxial experiments on the creep behavior of a saturated rockfill material [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(7): 04018039. DOI: https://doi.org/10.1061/(asce)gt.1943-5606.0001898.

    Article  Google Scholar 

  44. WANG Yuan, YU Yu-zhen, WU Yong-kang, et al. Development and application of a large-scale static and dynamic true triaxial apparatus for gravel [J]. International Journal of Geomechanics, 2018, 18(3): 04018004. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0001096.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-nan Wang  (王翔南).

Additional information

Foundation item

Project(2017YFC0404802) supported by the National Key R& D Program of China; Projects(U1965206, 51979143) supported by the National Natural Science Foundation of China; Project([2018]5630) supported by the Talents of Guizhou Science and Technology Cooperation Platform, China

Contributors

The overarching research goals were developed by WANG Xiang-nan and YU Yu-zhen. ZHAN Zheng-gang provided the study cases. ZHANG Xiang-tao, GAO Yi-zhao and WANG Xiang-nan established the models, completed the program construction and calculated the study cases. The initial draft of the manuscript was written by WANG Xiang-nan, GAO Yi-zhao, ZHANG Xiang-tao. ZHANG Xiang-tao, GAO Yi-zhao, WANG Xiang-nan, YU Yu-zhen replied to reviewers’ comments and revised the final version.

Conflict of interest

ZHANG Xiang-tao, GAO Yi-zhao, WANG Xiang-nan, YU Yu-zhen, ZHAN Zheng-gang declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Xt., Gao, Yz., Yu, Yz. et al. Generalized plasticity model considering grain crushing and anisotropy for rockfill materials. J. Cent. South Univ. 29, 1274–1288 (2022). https://doi.org/10.1007/s11771-022-4999-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4999-4

Key words

关键词

Navigation