Skip to main content
Log in

Vacuum deposited film growth, morphology and interfacial electronic structures of 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT)

2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩(C8-BTBT)的 真空沉积薄膜生长、形貌和界面电子结构

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Interfaces play critical roles in electronic devices and provide great diversity of film morphology and device performance. We retrospect the substrate mediated vacuum film growth of benchmark high mobility material 2, 7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT) and the interface electronic structures. The film growth of C8-BTBT molecules is diversified depending on the substrate-molecule and molecule-molecule interactions. On atomic smooth substrates C8-BTBT film grows in layer-by-layer mode while on coarse substrate it grows in islands mode. The initial molecular layer at dielectric, semiconductor and conductive substrates displays slight different lattice structure. The initial molecule orientation depends on the substrate and will gradually change to standing up configuration as in bulk phase. C8-BTBT behaves as electron donor when contacting with dielectric and stable conductive materials. This usually induces a dipole layer pointing to C8-BTBT and an upward bend bending in C8-BTBT side toward the interface. Although it is air stable, C8-BTBT is chemically reactive with some transition metals and compounds. The orientation change from lying down to standing up in the film usually leads to decrease of ionization potential. The article provides insights to the interface physical and chemical processes and suggestions for optimal design and fabrication of C8-BTBT based devices.

摘要

两种材料的界面是物质交换和能量交换的场点,在电子器件中起着关键作用. 同种材料可在不同基底材料上形成多种不同的薄膜形态,并展现不同的器件性能. 本文综述了高迁移率有机小分子半导体2,7-二辛基[1]苯并噻吩并[3,2-b]苯并噻吩(C8-BTBT)在不同的功能材料上的真空沉积薄膜生长、界面过程以及界面电子结构. C8-BTBT 分子的薄膜生长取决于衬底与C8-BTBT 以及C8-BTBT 分子之间的相互作用. 在原子级光滑衬底上,C8-BTBT 薄膜一般以层状模式生长,而在粗糙衬底上,C8-BTBT 薄膜倾向于岛状模式生长. 在电介质、半导体和导电衬底上沉积的初始C8-BTBT 分子层显示出略有不同的晶格结构. 界面层C8-BTBT 分子的取向取决于衬底与有机分子的相互作用,但是在厚膜情况下表面层终将改变为直立构型. C8-BTBT 与电介质或高功函数导电材料接触时表现为电子供体,这通常会诱导出指向C8-BTBT 的界面偶极层,以及C8-BTBT 侧朝向界面的向上能带弯曲. 尽管C8-BTBT 具有空气稳定性,但仍会在某些过渡金属,如镍、钴和化合物界面发生化学反应. C8-BTBT界面电子结构与其薄膜形貌和分子取向有关,当膜厚增加、分子取向从平躺到直立时,C-H 会形成表面偶极层,导致电离能减小. 本文提供了C8-BTBT 的界面物理和化学过程的机制分析,并为基于C8-BTBT 的电子器件的优化设计和制造提供参考.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TANG C W. Two-layer organic photovoltaic cell [J]. Applied Physics Letters, 1986, 48(2): 183–185. DOI: https://doi.org/10.1063/1.96937.

    Article  Google Scholar 

  2. BURROUGHES J H, BRADLEY D D C, BROWN A R, et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 347(6293): 539–541. DOI: https://doi.org/10.1038/347539a0.

    Article  Google Scholar 

  3. GELINCK G H, HUITEMA H E A, van VEENENDAAL E, et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors [J]. Nature Materials, 2004, 3(2): 106–110. DOI: https://doi.org/10.1038/nmat1061.

    Article  Google Scholar 

  4. ROGERS J A, BAO Z N. Printed plastic electronics and paperlike displays [J]. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40(20): 3327–3334. DOI: https://doi.org/10.1002/pola.10405.

    Article  Google Scholar 

  5. ZHANG Feng-jiao, HU Yun-bin, SCHUETTFORT T, et al. Critical role of alkyl chain branching of organic semiconductors in enabling solution-processed N-channel organic thin-film transistors with mobility of up to 3.50 cm2·V−1·s−1 [J]. Journal of the American Chemical Society, 2013, 135(6): 2338–2349. DOI: https://doi.org/10.1021/ja311469y.

    Article  Google Scholar 

  6. KIM C H, HLAING H, PAYNE M M, et al. Difluorinated 6, 13-bis(triisopropylsilylethynyl)pentacene: Synthesis, crystallinity, and charge-transport properties [J]. Chem Phys Chem, 2015, 16(6): 1251–1257. DOI: https://doi.org/10.1002/cphc.201402750.

    Article  Google Scholar 

  7. IRFAN A. Push-pull effect on the charge transport characteristics in V-shaped organic semiconductor materials [J]. Bulletin of Materials Science, 2021, 44(1): 1–8. DOI: https://doi.org/10.1007/s12034-020-02316-y.

    Article  Google Scholar 

  8. SINHA N, PAKHIRA S. Tunability of the electronic properties of covalent organic frameworks [J]. ACS Applied Electronic Materials, 2021, 3(2): 720–732. DOI: https://doi.org/10.1021/acsaelm.0c00867.

    Article  Google Scholar 

  9. FACCHETTI A. Semiconductors for organic transistors [J]. Materials Today, 2007, 10(3): 28–37. DOI: https://doi.org/10.1016/S1369-7021(07)70017-2.

    Article  Google Scholar 

  10. YUAN Y, GIRI G, AYZNER A L, et al. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method [J]. Nature Communications, 2014, 5: 3005. DOI: https://doi.org/10.1038/ncomms4005.

    Article  Google Scholar 

  11. TAKIMIYA K, OSAKA I, MORI T, et al. Organic semiconductors based on [1]benzothieno[3, 2-b] [1] benzothiophene substructure [J]. Accounts of Chemical Research, 2014, 47(5): 1493–1502. DOI: https://doi.org/10.1021/ar400282g.

    Article  Google Scholar 

  12. LIU Xiao-long, LUO Xiao-guang, NAN Hai-yan, et al. Epitaxial ultrathin organic crystals on graphene for high efficiency phototransistors [J]. Advanced Materials, 2016, 28(26): 5200–5205. DOI: https://doi.org/10.1002/adma.201600400.

    Article  Google Scholar 

  13. TAKIMIYA K, SHINAMURA S, OSAKA I, et al. Thienoacene-based organic semiconductors [J]. Advanced Materials, 2011, 23(38): 4347–4370. DOI: https://doi.org/10.1002/adma.201102007.

    Article  Google Scholar 

  14. MITSUI C, YAMAGISHI M, SHIKATA R, et al. Oxygen- and sulfur-bridged bianthracene V-shaped organic semiconductors [J]. Bulletin of the Chemical Society of Japan, 2017, 90(8): 931–938. DOI: https://doi.org/10.1246/bcsj.20170030.

    Article  Google Scholar 

  15. KRAFT U, ANTHONY J E, RIPAUD E, et al. Low-voltage organic transistors based on tetraceno[2, 3-b]thiophene: Contact resistance and air stability [J]. Chemistry of Materials, 2015, 27(3): 998–1004. DOI: https://doi.org/10.1021/cm5043183.

    Article  Google Scholar 

  16. ZHOU Ye-cheng, DENG Wei-qiao, ZHANG Hao-li. Phonon-electron coupling and tunneling effect on charge transport in organic semi-conductor crystals of Cn-BTBT [J]. The Journal of Chemical Physics, 2016, 145(10): 104108. DOI: https://doi.org/10.1063/1.4962298.

    Article  Google Scholar 

  17. EBATA H, IZAWA T, MIYAZAKI E, et al. Highly soluble[1] benzothieno[3, 2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors [J]. Journal of the American Chemical Society, 2007, 129(51): 15732–15733. DOI: https://doi.org/10.1021/ja074841i.

    Article  Google Scholar 

  18. CAO Ju-peng, WEI Xiao-yun, CHE Yu-xuan, et al. Polysiloxane — poly(vinyl alcohol) composite dielectrics for high-efficiency low voltage organic thin film transistors [J]. Journal of Materials Chemistry C, 2019, 7(16): 4879–4886. DOI: https://doi.org/10.1039/c9tc00717b.

    Article  Google Scholar 

  19. UEMURA T, HIROSE Y, UNO M, et al. Very high mobility in solution-processed organic thin-film transistors of highly ordered [1]benzothieno[3, 2-b]benzothiophene derivatives [J]. Applied Physics Express, 2009, 2(11): 111501. DOI: https://doi.org/10.1143/apex.2.111501.

    Article  Google Scholar 

  20. WU H, IINO H, HANNA J I. Scalable ultrahigh-speed fabrication of uniform polycrystalline thin films for organic transistors [J]. ACS Applied Materials & Interfaces, 2020, 12(26): 29497–29504. DOI: https://doi.org/10.1021/acsami.0c05105.

    Google Scholar 

  21. XIE Peng-shan, LIU Tian-jiao, HE Pei, et al. The effect of air exposure on device performance of flexible C8-BTBT organic thin-film transistors with hygroscopic insulators [J]. Science China: Materials, 2020, 63(12): 2551–2559. DOI: https://doi.org/10.1007/s40843-020-1489-6.

    Google Scholar 

  22. WANG Lu, WANG Cong, YU Xi-xia, et al. Two-dimensional organic single-crystalline p-n junctions for ambipolar field transistors [J]. Science China: Materials, 2020, 63(1): 122–127. DOI: https://doi.org/10.1007/s40843-019-9453-5.

    Google Scholar 

  23. YU S G, JO Y R, KIM M W, et al. Growth kinetics of single crystalline C8-BTBT rods via solvent vapor annealing [J]. The Journal of Physical Chemistry C, 2020, 124(27): 14873–14880. DOI: https://doi.org/10.1021/acs.jpcc.0c03191.

    Article  Google Scholar 

  24. WU Gang, CHEN Chen, LIU Shuang, et al. Solution-grown organic single-crystal field-effect transistors with ultrahigh response to visible-blind and deep UV signals [J]. Advanced Electronic Materials, 2015, 1(8): 1500136. DOI: https://doi.org/10.1002/aelm.201500136.

    Article  Google Scholar 

  25. ENDO T, NAGASE T, KOBAYASHI T, et al. Solution-processed dioctylbenzothienobenzothiophene-based top-gate organic transistors with high mobility, low threshold voltage, and high electrical stability [J]. Applied Physics Express, 2010, 3(12): 121601. DOI: https://doi.org/10.1143/apex.3.121601.

    Article  Google Scholar 

  26. IZAWA T, MIYAZAKI E, TAKIMIYA K. Molecular ordering of high-performance soluble molecular semiconductors and re-evaluation of their field-effect transistor characteristics [J]. Advanced Materials, 2008, 20(18): 3388–3392. DOI: https://doi.org/10.1002/adma.200800799.

    Article  Google Scholar 

  27. HUANG Yu-lan, SUN Jia, ZHANG Ji-dong, et al. Controllable thin-film morphology and structure for 2, 7-dioctyl[1]benzothieno[3, 2-b] [1]benzothiophene (C8BTBT) based organic field-effect transistors [J]. Organic Electronics, 2016, 36: 73–81. DOI: https://doi.org/10.1016/j.orgel.2016.05.019.

    Article  Google Scholar 

  28. JO J W, KANG Jin-gu, KIM K T, et al. Nanocluster-based ultralow-temperature driven oxide gate dielectrics for high-performance organic electronic devices [J]. Materials, 2020, 13(23): 5571. DOI: https://doi.org/10.3390/ma13235571.

    Article  Google Scholar 

  29. TU Wei-wei, LIU Tang, ZHANG Zhong-qiang, et al. Ultra-wide bandgap organic acceptor material and its application in organic UV photodetector [J]. Synthetic Metals, 2016, 219: 20–25. DOI: https://doi.org/10.1016/j.synthmet.2016.05.004.

    Article  Google Scholar 

  30. ELGAZZAR E, OZDEMIR M, USTA H, et al. Logarithmic organic photodetectors [J]. Synthetic Metals, 2015, 210: 288–296. DOI: https://doi.org/10.1016/j.synthmet.2015.10.008

    Article  Google Scholar 

  31. TONG Si-chao, SUN Jia, WANG Chun-hua, et al. High-performance broadband perovskite photodetectors based on CH3NH3PbI3/C8BTBT heterojunction [J]. Advanced Electronic Materials, 2017, 3(7): 1700058. DOI: https://doi.org/10.1002/aelm.201700058.

    Article  Google Scholar 

  32. LI Xing, XIE Peng-shan, MO Xin-di, et al. A highperformance and long-term air-stable CH3NH3PbI3/C8BTBT heterojunction photodetector fabricated via chemical vapor deposition [J]. Physica Status Solidi (RRL)—Rapid Research Letters, 2021, 15(2): 2000479. DOI: https://doi.org/10.1002/pssr.202000479.

    Article  Google Scholar 

  33. GEDDA M, YENGEL E, FABER H, et al. Ruddlesden-popper-phase hybrid halide perovskite/small-molecule organic blend memory transistors [J]. Advanced Materials, 2021, 33(7): 2003137. DOI: https://doi.org/10.1002/adma.202003137.

    Article  Google Scholar 

  34. LI Qing-xuan, WANG Tian-yu, WANG Xiao-lin, et al. Flexible organic field-effect transistor arrays for wearable neuromorphic device applications [J]. Nanoscale, 2020, 12(45): 23150–23158. DOI: https://doi.org/10.1039/d0nr06478e.

    Article  Google Scholar 

  35. MEYERS T, VIDOR F F, PULS C, et al. Low-voltage C8-BTBT thin-film transistors for flexible electronics [J]. Materials Today: Proceedings, 2017, 4: S232–S236. DOI: https://doi.org/10.1016/j.matpr.2017.09.192.

    Google Scholar 

  36. XIE Peng-shan, LIU Tian-jiao, SUN Jia, et al. Solution-processed ultra-flexible C8-BTBT organic thin-film transistors with the corrected mobility over 18 cm2/(V s) [J]. Science Bulletin, 2020, 65(10): 791–795. DOI: https://doi.org/10.1016/j.scib.2020.03.013.

    Article  Google Scholar 

  37. XIA Hua-yan, TONG Si-chao, ZHANG Chu-jun, et al. Flexible and air-stable perovskite network photodetectors based on CH3NH3PbI3/C8BTBT bulk heterojunction [J]. Applied Physics Letters, 2018, 112(23): 233301. DOI: https://doi.org/10.1063/1.5024330.

    Article  Google Scholar 

  38. KOBAYASHI H, KOBAYASHI N, HOSOI S, et al. Hopping and band mobilities of pentacene, rubrene, and 2, 7-dioctyl[1] benzothieno[3, 2-b] [1]benzothiophene (C8-BTBT) from first principle calculations [J]. The Journal of Chemical Physics, 2013, 139(1): 014707. DOI: https://doi.org/10.1063/1.4812389.

    Article  Google Scholar 

  39. YUAN Yong-bo, HUANG Jin-song. Ultrahigh gain, low noise, ultraviolet photodetectors with highly aligned organic crystals [J]. Advanced Optical Materials, 2016, 4(2): 264–270. DOI: https://doi.org/10.1002/adom.201500560.

    Article  Google Scholar 

  40. LIU Chuan, MINARI T, LI Yun, et al. Direct formation of organic semiconducting single crystals by solvent vapor annealing on a polymer base film [J]. Journal of Materials Chemistry, 2012, 22(17): 8462. DOI: https://doi.org/10.1039/c2jm15747k.

    Article  Google Scholar 

  41. RESEL R. Crystallographic studies on hexaphenyl thin films—A review [J]. Thin Solid Films, 2003, 433(1,2): 1–11. DOI: https://doi.org/10.1016/S0040-6090(03)00312-2.

    Article  Google Scholar 

  42. CHUNG H, DIAO Ying. Polymorphism as an emerging design strategy for high performance organic electronics [J]. Journal of Materials Chemistry C, 2016, 4(18): 3915–3933. DOI: https://doi.org/10.1039/C5TC04390E.

    Article  Google Scholar 

  43. JONES A O F, GEERTS Y H, KARPINSKA J, et al. Substrate-induced phase of a [1]benzothieno[3, 2-b] benzothiophene derivative and phase evolution by aging and solvent vapor annealing [J]. ACS Applied Materials & Interfaces, 2015, 7(3): 1868–1873. DOI: https://doi.org/10.1021/am5075908.

    Article  Google Scholar 

  44. BOUCHOMS I P M, SCHOONVELD W A, VRIJMOETH J, et al. Morphology identification of the thin film phases of vacuum evaporated pentacene on SIO2 substrates [J]. Synthetic Metals, 1999, 104(3): 175–178. DOI: https://doi.org/10.1016/S0379-6779(99)00050-8.

    Article  Google Scholar 

  45. WANG Shi-tan, LYU Lu, NIU Dong-mei, et al. Breaking down and reconstruction of Islands during the film growth of CuPc on HOPG [J]. Applied Physics Letters, 2019, 114(24): 241602. DOI: https://doi.org/10.1063/1.5087728.

    Article  Google Scholar 

  46. HE D, ZHANG Y, WU Q, et al. Two-dimensional quasifreestanding molecular crystals for high-performance organic field-effect transistors [J]. Nature Communications, 2014, 5: 5162. DOI: https://doi.org/10.1038/ncomms6162.

    Article  Google Scholar 

  47. XU Rui, HE Dao-wei, ZHANG Yu-han, et al. Unveiling the structural origin of the high carrier mobility of a molecular monolayer on boron nitride [J]. Physical Review B, 2014, 90(22): 224106. DOI: https://doi.org/10.1103/physrevb.90.224106.

    Article  Google Scholar 

  48. LYU Lu, NIU Dong-mei, XIE Hai-peng, et al. The correlations of the electronic structure and film growth of 2, 7-diocty[1]benzothieno[3, 2-b]benzothiophene (C8-BTBT) on SiO2 [J]. Physical Chemistry Chemical Physics: PCCP, 2017, 19(2): 1669–1676. DOI: https://doi.org/10.1039/c6cp06919c.

    Article  Google Scholar 

  49. HIROSHIBA N, HAYAKAWA R, WAKAYAMA Y. Onterrace graphoepitaxy for remarkable one-dimensional growth of 2, 7-dioctyl[1]benzothieno[3, 2-b]benzothiophene (C8-BTBT) nanowires [J]. Organic Electronics, 2019, 74: 33–36. DOI: https://doi.org/10.1016/j.orgel.2019.06.042.

    Article  Google Scholar 

  50. KIGUCHI M, NAKAYAMA M, SHIMADA T, et al. Electricfield-induced charge injection or exhaustion in organic thin film transistor [J]. Physical Review B, 2005, 71(3): 035332. DOI: https://doi.org/10.1103/physrevb.71.035332.

    Article  Google Scholar 

  51. LIU Chuan, XU Yong, LI Yun, et al. Critical impact of gate dielectric interfaces on the contact resistance of high-performance organic field-effect transistors [J]. The Journal of Physical Chemistry C, 2013, 117(23): 12337–12345. DOI: https://doi.org/10.1021/jp4023844.

    Article  Google Scholar 

  52. CHOE Y S, YI M H, KIM J H, et al. Crosslinked polymer-mixture gate insulator for high-performance organic thin-film transistors [J]. Organic Electronics, 2016, 36: 171–176. DOI: https://doi.org/10.1016/j.orgel.2016.06.002.

    Article  Google Scholar 

  53. HE Dao-wei, PAN Yi-ming, NAN Hai-yan, et al. A van der Waals pn heterojunction with organic/inorganic semiconductors [J]. Applied Physics Letters, 2015, 107(18): 183103. DOI: https://doi.org/10.1063/1.4935028.

    Article  Google Scholar 

  54. LIU Xiao-long, BALLA I, SANGWAN V K, et al. Ultrahigh vacuum self-assembly of rotationally commensurate C8-BTBT/MoS2/graphene mixed-dimensional heterostructures [J]. Chemistry of Materials, 2019, 31(5): 1761–1766. DOI: https://doi.org/10.1021/acs.chemmater.8b05348.

    Article  Google Scholar 

  55. PAZOKI S, FRICK J, DOUGHERTY D B. Dynamics of domain boundaries at metal-organic interfaces [J]. The Journal of Chemical Physics, 2021, 154(12): 124704. DOI: https://doi.org/10.1063/5.0029313.

    Article  Google Scholar 

  56. IKEDA T, TAHARA K, KADOYA T, et al. Ferrocene on insulator: Silane coupling to a SiO2 surface and influence on electrical transport at a buried interface with an organic semiconductor layer [J]. Langmuir, 2020, 36(21): 5809–5819. DOI: https://doi.org/10.1021/acs.langmuir.0c00515.

    Article  Google Scholar 

  57. MOH A M, SASAKI K, SHINAGAWA T, et al. Preferred orientation of 2, 7-dioctyl[1]benzothieno[3, 2-b] [1] benzothiophene molecules on inorganic single-crystal substrates with various orientations [J]. Japanese Journal of Applied Physics, 2018, 57(8S3): 08RE04. DOI: https://doi.org/10.7567/jjap.57.08re04.

    Article  Google Scholar 

  58. GAO Yong-li. Surface analytical studies of interfaces in organic semiconductor devices [J]. Materials Science and Engineering R: Reports, 2010, 68(3): 39–87. DOI: https://doi.org/10.1016/j.mser.2010.01.001.

    Article  Google Scholar 

  59. ZHU X Y. Electronic structure and electron dynamics at molecule-metal interfaces: Implications for molecule-based electronics [J]. Surface Science Reports, 2004, 56(1, 2): 1–83. DOI: https://doi.org/10.1016/j.surfrep.2004.09.002. (in Chinese)

    Article  Google Scholar 

  60. ZHANG Hong, NIU Dong-mei, LÜ Lu, et al. Thickness-dependent electronic structure of the interface of 2, 7-dioctyl [1]benzothieno[3, 2-b] [1]benzothiophene/Ni(100) [J]. Acta Physica Sinica, 2016, 65(4): 047902.

    Article  Google Scholar 

  61. WANG Shi-tan, NIU Dong-mei, LYU Lu, et al. Interface electronic structure and morphology of 2, 7-dioctyl[1] benzothieno[3, 2-b]benzothiophene (C8-BTBT) on Au film [J]. Applied Surface Science, 2017, 416: 696–703. DOI: https://doi.org/10.1016/j.apsusc.2017.04.219.

    Article  Google Scholar 

  62. ZHANG Yu-he, NIU Dong-mei, LYU Lu, et al. Adsorption, film growth, and electronic structures of 2, 7-dioctyl[1] benzothieno- [3, 2-b] [1]benzothiophen-e (C8-BTBT) on Cu (100) [J]. Acta Physico-Chimica Sinica, 2016, 65(15): 157901. DOI: https://doi.org/10.7498/aps.65.157901. (in Chinese)

    Article  Google Scholar 

  63. LI Lin, TONG Si-chao, ZHAO Yuan, et al. Interfacial electronic structures of photodetectors based on C8BTBT/perovskite [J]. ACS Applied Materials & Interfaces, 2018, 10(24): 20959–20967. DOI: https://doi.org/10.1021/acsami.8b03355.

    Article  Google Scholar 

  64. ZHU Meng-long, LYU Lu, NIU Dong-mei, et al. Effect of a MoO3 buffer layer between C8-BTBT and Co(100) single-crystal film [J]. RSC Advances, 2016, 6(113): 112403–112408. DOI: https://doi.org/10.1039/c6ra23981a.

    Article  Google Scholar 

  65. ZHU Meng-long, LYU Lu, NIU Dong-mei, et al. Interfacial chemical and electronic structure of cobalt deposition on 2, 7-dioctyl[1]benzothieno[3, 2-b]benzothiophene (C8-BTBT) [J]. Applied Surface Science, 2017, 402: 142–146. DOI: https://doi.org/10.1016/j.apsusc.2017.01.074.

    Article  Google Scholar 

  66. XIE Hai-peng, NIU Dong-mei, ZHAO Yuan, et al. Photoemission studies of C8-BTBT/La0.67Sr0.33MnO3 interface [J]. Synthetic Metals, 2020, 260: 116261. DOI: https://doi.org/10.1016/j.synthmet.2019.116261.

    Article  Google Scholar 

  67. LU Ying, HAN Qiang, ZHAO Yuan, et al. Vapor-deposited all inorganic CsPbBr3 thin films and interface modification with C8-BTBT for high performance photodetector [J]. Results in Physics, 2020, 17: 103087. DOI: https://doi.org/10.1016/j.rinp.2020.103087.

    Article  Google Scholar 

  68. WEI Xu-hui, WANG Shi-tan, WANG Can, et al. Electronic structures and nanofilm growth of 2, 7-dioctyl[1]benzothieno [3, 2-b]benzothiophene on black phosphorus [J]. Journal of Nanoscience and Nanotechnology, 2018, 18(6): 4332–4336. DOI: https://doi.org/10.1166/jnn.2018.15044.

    Article  Google Scholar 

  69. ZHAO Yuan, LIU Xiao-liang, FENG Guang-di, et al. Modification of C60 nano-interlayers on organic field-effect transistors based on 2, 7-diocty[1]benzothieno- [3, 2-b] benzothiophene (C8-BTBT)/SiO2 [J]. Results in Physics, 2020, 19: 103590. DOI: https://doi.org/10.1016/j.rinp.2020.103590.

    Article  Google Scholar 

  70. ZHAO Yuan, LIU Xiao-liang, LI Lin, et al. Modification of an ultrathin C60 interlayer on the electronic structure and molecular packing of C8-BTBT on HOPG [J]. Physical Chemistry Chemical Physics: PCCP, 2020, 22(43): 25264–25271. DOI: https://doi.org/10.1039/d0cp04288a.

    Article  Google Scholar 

  71. KIM D Y, SUBBIAH J, SARASQUETA G, et al. The effect of molybdenum oxide interlayer on organic photovoltaic cells [J]. Applied Physics Letters, 2009, 95(9): 093304. DOI: https://doi.org/10.1063/1.3220064.

    Article  Google Scholar 

  72. ABLAT A, KYNDIAH A, HOUIN G, et al. Role of oxide/metal bilayer electrodes in solution processed organic field effect transistors[J]. Scientific Reports, 2019, 9: 6685. DOI: https://doi.org/10.1038/s41598-019-43237-z.

    Article  Google Scholar 

  73. LYU Lu, NIU Dong-mei, XIE Hai-peng, et al. Orientation-dependent energy level alignment and film growth of 2, 7-diocty[1]benzothieno[3, 2-b]benzothiophene (C8-BTBT) on HOPG [J]. The Journal of Chemical Physics, 2016, 144(3): 034701. DOI: https://doi.org/10.1063/1.4939839.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong-mei Niu  (牛冬梅) or Yong-li Gao  (高永立).

Additional information

Foundation item

Project(2017YFA0206602) supported in part by the National Key Research and Development Program of China

Contributors

NIU Dong-mei provided the concept and edited the draft of manuscript. WEI Jun-hua conducted the literature review and wrote the first draft of the manuscript. NIU Dong-mei, GAO Yong-li, and WEI Jun-hua edited the draft of manuscript.

Conflict of interest

The authors declare that they have no conflict of interest in this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Jh., Niu, Dm. & Gao, Yl. Vacuum deposited film growth, morphology and interfacial electronic structures of 2,7-dioctyl[1]benzothieno[3,2-b]benzothiophene (C8-BTBT). J. Cent. South Univ. 29, 1041–1061 (2022). https://doi.org/10.1007/s11771-022-4996-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4996-7

Key words

关键词

Navigation