Skip to main content
Log in

Evaluation of time-dependent rheological properties of cemented paste backfill incorporating superplasticizer with special focus on thixotropy and static yield stress

掺减水剂尾砂膏体充填料浆流变参数的时效性研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Superplasticizers are widely used to reduce the pipe flow resistance of cemented paste backfill (CPB), which is characterised by high concentration and high yield stress. This study aimed to assess the time-dependent rheological properties of CPB containing superplasticizer, with special focus on static yield stress and thixotropy. The results indicate that with the increase of the superplasticizer dosage, the static yield stress, dynamic yield stress and thixotropy of CPB decreased significantly, while the plastic viscosity decreased slightly. The curing time has a significant effect on the static yield stress, dynamic yield stress and thixotropy of CPB containing superplasticizer, which increase by 46.6%–87.1%, 15.2%–35.6% and 79.4%–138.2%, respectively, within 2 h. The static yield stress, dynamic yield stress and thixotropy of CPB without superplasticizer only increase by 4.9%, 6.3% and 16.1%, respectively, within 2 h. The curing time has a significant influence on the plastic viscosity of CPB regardless of superplasticizer addition, the plastic viscosity increases by 13.2%–19.7% within 2 h. Regardless of superplasticizer dosage, plotting of both static yield stress and dynamic yield stress versus thixotropy produces clearly linear curves. The findings of this study are conducive to the design of pipe transportation of CPB containing superplasticizer.

摘要

采用流变测试方法研究掺减水剂的胶结膏体随时间变化的流变参数, 特别关注静态屈服应力和 触变性. 结果表明, 随减水剂用量的增加, 胶结膏体的静态屈服应力、动态屈服应力和触变性显著降 低, 塑性黏度几乎不变. 养护时间对掺减水剂胶结膏体的静态屈服应力、动态屈服应力和触变性有显 著影响, 在2 h 内分别提高了46.6%~87.1%、15.2%~35.6%和79.4%~138.2%. 无减水剂胶结膏体的静 态屈服应力、动态屈服应力和触变性在2 h 内仅分别提高4.9%、6.3%和16.1%. 无论是否添加减水剂, 养护时间对胶结膏体的塑性黏度有较大影响, 2 h 内塑性黏度增大13.2%~19.7%. 无论是否添加减水 剂, 胶结膏体的触变性随静态屈服应力、动态屈服应力呈线性函数增长. 研究结果对掺减水剂胶结膏 体的管道输送设计有一定的指导意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG Kun, YANG Peng, HUDSONEDWARDS K, et al. Status and development for the prevention and management of tailings dam failure accidents [J]. Chinese Journal of Engineering, 2018, 40(5): 526–539. DOI: https://doi.org/10.13374/j.issn2095-9389.2018.05.002.87

    Google Scholar 

  2. SHESHPARI M. A review of underground mine backfilling methods with emphasis on cemented paste backfill [J]. Electronic Journal of Geotechnical Engineering, 2015, 20: 5183–5208. http://ejge.com/2015/Ppr2015.0455ma.pdf.

    Google Scholar 

  3. QI Chong-chong, FOURIE A. Cemented paste backfill for mineral tailings management: Review and future perspectives [J]. Minerals Engineering, 2019, 144: 106025. DOI: https://doi.org/10.1016/j.mineng.2019.106025.

    Article  Google Scholar 

  4. XU Wen-bin, TIAN Ming-ming, LI Qian-long. Time-dependent rheological properties and mechanical performance of fresh cemented tailings backfill containing flocculants [J]. Minerals Engineering, 2020, 145: 106064. DOI: https://doi.org/10.1016/j.mineng.2019.106064.

    Article  Google Scholar 

  5. DENG Xue-jie, KLEIN B, TONG Li-bin, et al. Experimental study on the rheological behavior of ultra-fine cemented backfill [J]. Construction and Building Materials, 2018, 158: 985–994. DOI: https://doi.org/10.1016/j.conbuildmat.2017.05.085.

    Article  Google Scholar 

  6. JIANG Hai-qiang, FALL M, YILMAZ E, et al. Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy [J]. Powder Technology, 2020, 372: 258–266. DOI: https://doi.org/10.1016/j.powtec.2020.06.009.

    Article  Google Scholar 

  7. WU Ai-xiang, RUAN Z, SHAO Ya-jian, et al. Friction losses of cemented unclassified iron tailings slurry based on full-scale pipe-loop test [C]// Proceedings of the 22nd International Conference on Paste, Thickened and Filtered Tailings. Perth: Australian Centre for Geomechanics, 2019. DOI: https://doi.org/10.36487/acg_rep/1910_44_ruan.

    Book  Google Scholar 

  8. SIVAKUGAN N, VEENSTRA R, NAGULESWARAN N. Underground mine backfilling in Australia using paste fills and hydraulic fills [J]. International Journal of Geosynthetics and Ground Engineering, 2015, 1(2): 1–7. DOI: https://doi.org/10.1007/s40891-015-0020-8.

    Article  Google Scholar 

  9. WU Ai-xiang, LI Hong, CHENG Hai-yong, et al. Status and prospects of researches on rheology of paste backfill using unclassified-tailings (Part 1): Concepts, characteristics and models [J]. Chinese Journal of Engineering, 2020, 42(7): 803–813. DOI: https://doi.org/10.13374/j.issn2095-9389.2019.10.29.001. (in Chinese)

    Google Scholar 

  10. WU Ai-xiang, JIAO H, WANG Hong-jiang, et al. Status and development trends of paste disposal technology with ultrafine unclassified tailings in China [C]// Proceedings of the 14th International Seminar on Paste and Thickened Tailings. Perth: Australian Centre for Geomechanics, 2011. DOI: https://doi.org/10.36487/acg_rep/1104_41_wu.

    Google Scholar 

  11. YIN Sheng-hua, SHAO Ya-jian, WU Ai-xiang, et al. A systematic review of paste technology in metal mines for cleaner production in China [J]. Journal of Cleaner Production, 2020, 247: 119590. DOI: https://doi.org/10.1016/j.jclepro.2019.119590.

    Article  Google Scholar 

  12. QI Chong-chong, CHEN Qiu-song, FOURIE A, et al. Pressure drop in pipe flow of cemented paste backfill: Experimental and modeling study [J]. Powder Technology, 2018, 333: 9–18. DOI: https://doi.org/10.1016/j.powtec.2018.03.070.

    Article  Google Scholar 

  13. BHARATHAN B, MCGUINNESS M, KUHAR S, et al. Pressure loss and friction factor in non-Newtonian mine paste backfill: Modelling, loop test and mine field data [J]. Powder Technology, 2019, 344: 443–453. DOI: https://doi.org/10.1016/j.powtec.2018.12.029.

    Article  Google Scholar 

  14. CHEN Qiu-song, ZHANG Qin-li, WANG Xin-min, et al. A hydraulic gradient model of paste-like crude tailings backfill slurry transported by a pipeline system [J]. Environmental Earth Sciences, 2016, 75(14): 1–9. DOI: https://doi.org/10.1007/s12665-016-5895-8.

    Google Scholar 

  15. GAO Ru-gao, ZHOU Ke-ping, ZHOU Yan-long, et al. Research on the fluid characteristics of cemented backfill pipeline transportation of mineral processing tailings [J]. Alexandria Engineering Journal, 2020, 59(6): 4409–4426. DOI: https://doi.org/10.1016/j.aej.2020.07.047.

    Article  Google Scholar 

  16. LI Xi-bing, LIU Bing, YAO Jin-rui, et al. Theory and practice of green mine backfill with whole phosphate waste [J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9): 1845–1865. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2018.09.16.

    Google Scholar 

  17. YÁÑEZ ROJAS R, TAPIA C. Tailings transport on high yield stress requirements: Turbulent or laminar flow? [C]//Proceedings of the 21st International Seminar on Paste and Thickened Tailings. Perth: Australian Centre for Geomechanics, 2018. DOI: https://doi.org/10.36487/acg_rep/1805_17_yanez.

    Google Scholar 

  18. BOGER D V. Rheology of slurries and environmental impacts in the mining industry [J]. Annual Review of Chemical and Biomolecular Engineering, 2013, 4: 239–257. DOI: https://doi.org/10.1146/annurev-chembioeng-061312-103347.

    Article  Google Scholar 

  19. BOGER D V. Rheology and the resource industries [J]. Chemical Engineering Science, 2009, 64(22): 4525–4536. DOI: https://doi.org/10.1016/j.ces.2009.03.007.

    Article  Google Scholar 

  20. ESHTIAGHI N, MARKIS F, YAP S D, et al. Rheological characterisation of municipal sludge: A review [J]. Water Research, 2013, 47(15): 5493–5510. DOI: https://doi.org/10.1016/j.watres.2013.07.001.

    Article  Google Scholar 

  21. PULLUM L, BOGER D V, SOFRA F. Hydraulic mineral waste transport and storage [J]. Annual Review of Fluid Mechanics, 2018, 50: 157–185. DOI: https://doi.org/10.1146/annurev-fluid-122316-045027.

    Article  MathSciNet  MATH  Google Scholar 

  22. PULLUM L. Pipelining tailings, pastes and backfill [C]//Proceedings of the 10th International Seminar on Paste and Thickened Tailings. 2007: 113–129. https://papers.acg.uwa.edu.au/p/702_12_Pullum/.

  23. QIAN Ye, KAWASHIMA S. Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy [J]. Cement and Concrete Composites, 2018, 86: 288–296. DOI: https://doi.org/10.1016/j.cemconcomp.2017.11.019.

    Article  Google Scholar 

  24. PANCHAL S, DEB D, SREENIVAS T. Variability in rheology of cemented paste backfill with hydration age, binder and superplasticizer dosages [J]. Advanced Powder Technology, 2018, 29(9): 2211–2220. DOI: https://doi.org/10.1016/j.apt.2018.06.005.

    Article  Google Scholar 

  25. CREBER K J, MCGUINNESS M, KERMANI M F, et al. Investigation into changes in pastefill properties during pipeline transport [J]. International Journal of Mineral Processing, 2017, 163: 35–44. DOI: https://doi.org/10.1016/j.minpro.2017.04.003.

    Article  Google Scholar 

  26. NEMOTO H, DATE S, HASHIMOTO S. Discussion of mix proportions of concrete for long-distance pumping [J]. Key Engineering Materials, 2017, 744: 32–39. DOI: https://doi.org/10.4028/www.scientific.net/kem.744.32.

    Article  Google Scholar 

  27. GAONA SIERRA A, RIBEIRO VARGES P, SANTIAGO RIBEIRO S. Startup flow of elasto-viscoplastic thixotropic materials in pipes [J]. Journal of Petroleum Science and Engineering, 2016, 147: 427–434. DOI: https://doi.org/10.1016/j.petrol.2016.09.003.

    Article  Google Scholar 

  28. LI Zhu-guo, CAO Guo-dong, GUO Kun. Numerical method for thixotropic behavior of fresh concrete [J]. Construction and Building Materials, 2018, 187: 931–941. DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.201.

    Article  Google Scholar 

  29. WU Ai-xiang, CHENG Hai-yong, YANG Ying. Thixotropic behavior of paste [C]// Proceedings of the 20th International Seminar on Paste and Thickened Tailings, Proceedings of the International Seminar on Paste and Thickened Tailings. Beijing: University of Science and Technology Beijing, 2017. DOI: https://doi.org/10.36487/acg_rep/1752_08_wu.

    Book  Google Scholar 

  30. MEWIS J, WAGNER N J. Thixotropy [J]. Advances in Colloid and Interface Science, 2009, 147–148: 214–227. DOI: https://doi.org/10.1016/j.cis.2008.09.005.

    Article  Google Scholar 

  31. EMAD M Z, MITRI H, KELLY C. State-of-the-art review of backfill practices for sublevel stoping system [J]. International Journal of Mining, Reclamation and Environment, 2015, 29(6): 544–556. DOI: https://doi.org/10.1080/17480930.2014.889363.

    Article  Google Scholar 

  32. MANGANE M B C, ARGANE R, TRAUCHESSEC R, et al. Influence of superplasticizers on mechanical properties and workability of cemented paste backfill [J]. Minerals Engineering, 2018, 116: 3–14. DOI: https://doi.org/10.1016/j.mineng.2017.11.006.

    Article  Google Scholar 

  33. YANG Lei, YILMAZ E, LI Jun-wei, et al. Effect of superplasticizer type and dosage on fluidity and strength behavior of cemented tailings backfill with different solid contents [J]. Construction and Building Materials, 2018, 187: 290–298. DOI: https://doi.org/10.1016/j.conbuildmat.2018.07.155.

    Article  Google Scholar 

  34. OUATTARA D, MBONIMPA M, YAHIA A, et al. Assessment of rheological parameters of high density cemented paste backfill mixtures incorporating superplasticizers [J]. Construction and Building Materials, 2018, 190: 294–307. DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.066.

    Article  Google Scholar 

  35. LIU Yin, LI Hao, WANG Kai, et al. Effects of accelerator-water reducer admixture on performance of cemented paste backfill [J]. Construction and Building Materials, 2020, 242: 118187. DOI: https://doi.org/10.1016/j.conbuildmat.2020.118187.

    Article  Google Scholar 

  36. CAVUSOGLU I, YILMAZ E, YILMAZ A O. Additivity effect on properties of cemented coal fly ash backfill containing water-reducing admixtures [J]. Construction and Building Materials, 2021, 267: 121021. DOI: https://doi.org/10.1016/j.conbuildmat.2020.121021.

    Article  Google Scholar 

  37. HARUNA S, FALL M. Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer [J]. Powder Technology, 2020, 360: 731–740. DOI: https://doi.org/10.1016/j.powtec.2019.09.025.

    Article  Google Scholar 

  38. DU Jia-fa, HOU Chen, ZHU Zhao-wen, LIU Hong-lei, LIU Xiao-guang. Flocculating sedimentation test of unclassified tailings and its engineering application [J]. Metal Mine, 2020, 523: 95–100. DOI: https://doi.org/10.19614/j.cnki.jsks.202001012. (in Chinese)

    Google Scholar 

  39. MIZANI S, SIMMS P. Method-dependent variation of yield stress in a thickened gold tailings explained using a structure based viscosity model [J]. Minerals Engineering, 2016, 98: 40–48. DOI: https://doi.org/10.1016/j.mineng.2016.07.011.

    Article  Google Scholar 

  40. BALA M, ZENTAR R, BOUSTINGORRY P. Comparative study of the yield stress determination of cement pastes by different methods [J]. Materials and Structures, 2019, 52(5): 102. DOI: https://doi.org/10.1617/s11527-019-1403-4.

    Article  Google Scholar 

  41. BAUER E, DE SOUSA J G G, GUIMARÃES E A, et al. Study of the laboratory Vane test on mortars [J]. Building and Environment, 2007, 42(1): 86–92. DOI: https://doi.org/10.1016/j.buildenv.2005.08.016.

    Article  Google Scholar 

  42. de MATOS P R, PILAR R, CASAGRANDE C A, et al. Comparison between methods for determining the yield stress of cement pastes [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 42(1): 1–13. DOI: https://doi.org/10.1007/s40430-019-2111-2.

    Google Scholar 

  43. SHUI Liang-liang, SUN Zhen-ping, YANG Hai-jing, et al. Experimental evidence for a possible dispersion mechanism of polycarboxylate-type superplasticisers [J]. Advances in Cement Research, 2016, 28(5): 287–297. DOI: https://doi.org/10.1680/jadcr.15.00070.

    Article  Google Scholar 

  44. LEONAVIČIUS D, PUNDIENĖ I, PRANCKEVIČIENĖ J, et al. Selection of superplasticisers for improving the rheological and mechanical properties of cement paste with CNTs [J]. Construction and Building Materials, 2020, 253: 119182. DOI: https://doi.org/10.1016/j.conbuildmat.2020.119182.

    Article  Google Scholar 

  45. MENG Ye-yun, LIAO Bing, WANG Kun, et al. Effects of cyclodextrin-modified polycarboxylate superplasticizers on the dispersion and hydration properties of cement paste [J]. Journal of Macromolecular Science: Part A, 2019, 56(10): 933–942. DOI: https://doi.org/10.1080/10601325.2019.1618191.

    Article  Google Scholar 

  46. OFWA T O, KOTENG D O, MWERO J N. Evaluating superplasticizer compatibility in the production of high performance concrete using Portland pozzolana cement CEM II/B-P [J]. International Journal of Civil Engineering, 2020, 7(6): 92–100. DOI: https://doi.org/10.14445/23488352/ijce-v7i6p112.

    Article  Google Scholar 

  47. ADJOUDJ M, EZZIANE K, KADRI E H, et al. Evaluation of rheological parameters of mortar containing various amounts of mineral addition with polycarboxylate superplasticizer [J]. Construction and Building Materials, 2014, 70: 549–559. DOI: https://doi.org/10.1016/j.conbuildmat2014.07.111.

    Article  Google Scholar 

  48. ROUSSEL N. Steady and transient flow behaviour of fresh cement pastes [J]. Cement and Concrete Research, 2005, 35(9): 1656–1664. DOI: https://doi.org/10.1016/j.cemconres.2004.08.001.

    Article  Google Scholar 

  49. WANG Qin, CUI Xin-you, WANG Jian, et al. Effect of fly ash on rheological properties of graphene oxide cement paste [J]. Construction and Building Materials, 2017, 138: 35–44. DOI: https://doi.org/10.1016/j.conbuildmat.2017.01.126.

    Article  Google Scholar 

  50. LIM G G, HONG S S, KIM D S, et al. Slump loss control of cement paste by adding polycarboxylic type slump-releasing dispersant [J]. Cement and Concrete Research, 1999, 29(2): 223–229. DOI: https://doi.org/10.1016/S0008-8846(98)00188-4.

    Article  Google Scholar 

  51. ZHAO Hui, SUN Wei, WU Xiao-ming, et al. Influence of addition of polycarboxylate-based superplasticizer on properties of high performance concrete [J]. Journal of Materials in Civil Engineering, 2020, 32(3): 04020009. DOI: https://doi.org/10.1061/(asce)mt.1943-5533.0003025.

    Article  Google Scholar 

  52. SILVA B, FERREIRA PINTO A P, GOMES A, et al. Fresh and hardened state behaviour of aerial lime mortars with superplasticizer [J]. Construction and Building Materials, 2019, 225: 1127–1139. DOI: https://doi.org/10.1016/j.conbuildmat.2019.07.275.

    Article  Google Scholar 

  53. COLLEPARDI M. Admixtures used to enhance placing characteristics of concrete [J]. Cement and Concrete Composites, 1998, 20(2, 3): 103–112. DOI: https://doi.org/10.1016/S0958-9465(98)00071-7.

    Article  Google Scholar 

  54. CHANDRA S, BJÖRNSTRÖM J. Influence of superplasticizer type and dosage on the slump loss of Portland cement mortars—Part II [J]. Cement and Concrete Research, 2002, 32(10): 1613–1619. DOI: https://doi.org/10.1016/S0008-8846(02)00838-4.

    Article  Google Scholar 

  55. WANG Yong, FALL M, WU Ai-xiang. Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate [J]. Cement and Concrete Composites, 2016, 67: 101–110. DOI: https://doi.org/10.1016/j.cemconcomp.2016.01.005.

    Article  Google Scholar 

  56. LI Zhi-kun, PENG Jia-hui. Influence of polycarboxylate superplasticizer on cement hydration products [J]. Applied Mechanics and Materials, 2014, 638–640: 1354–1359. DOI: https://doi.org/10.4028/www.scientific.net/amm.638-640.1354.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-jiang Wang  (王洪江).

Additional information

Foundation item

Project(51834001) supported by the National Natural Science Fundation of China; Project(N2101043) supported by the Fundamental Research Funds for the Central Universities of China

Contributors

The research goals were developed by WANG Hong-jiang and WU Ai-xiang. WANG Xiao-lin finished the experiments and data analysis. WANG Xiao-lin, PENG Qing-song and ZHANG Xi edited the draft of manuscript. JIANG Hai-qiang checked the spellings and grammars. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

The authors declare there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Xl., Wang, Hj., Wu, Ax. et al. Evaluation of time-dependent rheological properties of cemented paste backfill incorporating superplasticizer with special focus on thixotropy and static yield stress. J. Cent. South Univ. 29, 1239–1249 (2022). https://doi.org/10.1007/s11771-022-4993-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4993-x

Key words

关键词

Navigation