Skip to main content
Log in

Fabrication and characterization of high density LaB6 polycrystalline with (100) preferred orientation

具有(100)择优取向的高致密LaB6多晶材料的制备与表征

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

High density lanthanum hexaboride (LaB6) polycrystalline with (100) preferred orientation was prepared by spark plasma sintering (SPS) using LaB6 nanocubes as raw materials in this work. Microstructure and thermionic electron emission property of LaB6 polycrystalline were investigated detailedly. The results show that the LaB6 polycrystalline had a relative density of 95.8%, and there was a (100) preferred orientation on its surface normal to SPS pressing direction. The work function of LaB6 polycrystalline normal surface was only 2.73 eV, which was almost close to the theoretical work function of LaB6 (100) single crystal surface. The reasons for preferential orientation of LaB6 polycrystalline were analyzed.

摘要

本文以六硼化镧(LaB6)纳米立方体粉体为原料, 经放电等离子烧结(SPS)制备了具有(100)择优取 向的高致密LaB6多晶材料. 详细研究了LaB6多晶材料的微观组织结构和热电子发射性能, 结果表明 LaB6多晶材料的相对密度高达95.8%, 而且在垂直于SPS烧结压力方向上的表面形成了(100)择优取向. 具有择优取向的LaB6多晶材料表面的电子逸出功仅为2.73 eV, 与LaB6单晶材料(100)晶面的理论电子 逸出功接近. 分析了LaB6多晶材料具有择优取向的原因.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG H, TANG J, ZHANG Q, et al. Field emission of electrons from single LaB6 nanowires [J]. Advanced Materials, 2006, 18(1): 87–91. DOI: https://doi.org/10.1002/adma.200500508.

    Article  Google Scholar 

  2. AKOPOV G, YEUNG M T, KANER R B. Rediscovering the crystal chemistry of borides [J]. Advanced Materials, 2017, 29(21): 1604506. DOI: https://doi.org/10.1002/adma.201604506.

    Article  Google Scholar 

  3. CHAO Luo-meng, BAO Li-hong, WEI Wei, et al. First-principles study on the electronic structure, phonons and optical properties of LaB6 under high-pressure [J]. Journal of Alloys and Compounds, 2016, 672: 419–425. DOI: https://doi.org/10.1016/j.jallcom.2016.02.179.

    Article  Google Scholar 

  4. LIU Hong-liang, ZHANG Xin, NING Shu-yu, et al. The electronic structure and work functions of single crystal LaB6 typical crystal surfaces [J]. Vacuum, 2017, 143: 245–250. DOI: https://doi.org/10.1016/j.vacuum.2017.06.029.

    Article  Google Scholar 

  5. BAI Li-na, MA Ning, LIU Feng-li. Structure and chemical bond characteristics of LaB6 [J]. Physica B: Condensed Matter, 2009, 404(21): 4086–4089. DOI: https://doi.org/10.1016/j.physb.2009.07.189.

    Article  Google Scholar 

  6. ZHOU Shen-lin, ZHANG Jiu-xing, LIU Dan-min, et al. Synthesis and properties of nanostructured dense LaB6 cathodes by arc plasma and reactive spark plasma sintering [J]. Acta Materialia, 2010, 58(15): 4978–4985. DOI: https://doi.org/10.1016/j.actamat.2010.05.031.

    Article  Google Scholar 

  7. SONBER J K, SAIRAM K, MURTHY T S R C, et al. Synthesis, densification and oxidation study of lanthanum hexaboride [J]. Journal of the European Ceramic Society, 2014, 34(5): 1155–1160. DOI: https://doi.org/10.1016/j.jeurceramsoc.2013.11.023.

    Article  Google Scholar 

  8. UIJTTEWAAL M A, de WIJS G A, de GROOT R A. Ab initio and work function and surface energy anisotropy of LaB6 [J]. The Journal of Physical Chemistry B, 2006, 110(37): 18459–18465. DOI: https://doi.org/10.1021/jp063347i.

    Article  Google Scholar 

  9. NISHITANI R, AONO M, TANAKA T, et al. Surface structures and work functions of the LaB6 (100), (110) and (111) clean surfaces [J]. Surface Science, 1980, 93(2,3): 535–549. DOI: https://doi.org/10.1016/0039-6028(80)90281-2.

    Article  Google Scholar 

  10. GESLEY M, SWANSON L W. A determination of the low work function planes of LaB6 [J]. Surface Science, 1984, 146(2, 3): 583–599. DOI: https://doi.org/10.1016/0039-6028(84)90451-5.

    Article  Google Scholar 

  11. YAMAMOTO N, ROKUTA E, HASEGAWA Y, et al. Oxygen adsorption on LaB6 (100) and (111) surfaces [J]. Surface Science, 1996, 357–358: 708–711. DOI: https://doi.org/10.1016/0039-6028(96)00250-6.

    Article  Google Scholar 

  12. YAMAMOTO N, ROKUTA E, HASEGAWA Y, et al. Oxygen adsorption sites on the PrB6(100) and LaB6(100) surfaces [J]. Surface Science, 1996, 348(1,2): 133–142. DOI: https://doi.org/10.1016/0039-6028(95)00989-2.

    Article  Google Scholar 

  13. AĞAOĞULLARI D, BALCI Ö, AKÇAMLI N, et al. Effects of different milling conditions on the properties of lanthanum hexaboride nanoparticles and their sintered bodies [J]. Ceramics International, 2019, 45(15): 18236–18246. DOI: https://doi.org/10.1016/j.ceramint.2019.06.034.

    Article  Google Scholar 

  14. XU Bing, YANG Xin-yu, CHENG He-fa, et al. Preparation, characterization and property of high-quality LaB6 single crystal grown by the optical floating zone melting technique [J]. Vacuum, 2019, 168: 108845. DOI: https://doi.org/10.1016/j.vacuum.2019.108845.

    Article  Google Scholar 

  15. YU Yi-ping, WANG Song, LI Wei, et al. Low temperature synthesis of LaB6 nanoparticles by a molten salt route [J]. Powder Technology, 2018, 323: 203–207. DOI: https://doi.org/10.1016/j.powtec.2017.09.049.

    Article  Google Scholar 

  16. YU Yi-ping, WANG Song, LI Wei, et al. Synthesis of single-crystalline lanthanum hexaboride nanocubes by a low temperature molten salt method [J]. Materials Chemistry and Physics, 2018, 207: 325–329. DOI: https://doi.org/10.1016/j.matchemphys.2017.12.081.

    Article  Google Scholar 

  17. JENSEN M S, EINARSRUD M A, GRANDE T. Preferential grain orientation in hot pressed TiB2 [J]. Journal of the American Ceramic Society, 2007, 90(4): 1339–1341. DOI: https://doi.org/10.1111/j.1551-2916.2007.01623.x.

    Article  Google Scholar 

  18. PELLETIER J, POMOT C. Work function of sintered lanthanum hexaboride [J]. Applied Physics Letters, 1979, 34(4): 249–251. DOI: https://doi.org/10.1063/1.90769.

    Article  Google Scholar 

  19. BAO Li-hong, ZHANG Jiu-xing, ZHOU Shen-lin, et al. The effect of precursor boron nanopowder on the microstructure and emission properties of LaB6 cathode materials [J]. Physica Status Solidi C, 2012, 9(1): 11–14. DOI: https://doi.org/10.1002/pssc.201084151.

    Article  Google Scholar 

  20. CHENG Wei, HUANG Mei-song, YANG Lu-hui, et al. Preparation of high-density LaB6 polycrystalline by low-pressure solid-state sintering [J]. Mining and Metallurgical Engineering, 2014, 34(2): 122–124. (in Chinese)

    Google Scholar 

  21. KAUER E. Optical and electrical properties of LaB6 [J]. Physics Letters, 1963, 7(3): 171–173. DOI: https://doi.org/10.1016/0031-9163(63)90369-X.

    Article  Google Scholar 

  22. BAO Li-hong, ZHANG Jiu-xing, ZHOU Shen-lin, et al. Preparation and characterization of grain size controlled LaB6 polycrystalline cathode material [J]. Chinese Physics Letters, 2010, 27(10): 107901. DOI: https://doi.org/10.1088/0256-307x/27/10/107901.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-ping Yu  (余艺平).

Additional information

Foundation item

Project(51902342) supported by the National Natural Science Foundation of China

Contributors

YU Yi-ping did the experiments and wrote the first draft of manuscript. WANG Song and LI Wei analyzed the data and edited the draft manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

YU Yi-ping, WANG Song, and LI Wei declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Yp., Wang, S. & Li, W. Fabrication and characterization of high density LaB6 polycrystalline with (100) preferred orientation. J. Cent. South Univ. 29, 1118–1123 (2022). https://doi.org/10.1007/s11771-022-4983-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4983-z

Key words

关键词

Navigation