Skip to main content
Log in

Influence of minor Sc additions on grain refinement and microstructure characteristics of a high Zn-containing Al-Zn-Mg-Cu-Zr alloy

高 Zn 含量 Al-Zn-Mg-Cu-Zr 合金中添加微量 Sc 后的晶粒细化及显微特征

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In the present work, scandium elements with a series of contents (0.06 wt.%, 0.10 wt.%, 0.14 wt.%, 0.17 wt.%, 0.20 wt.% and 0.25 wt.%) were added in a high Zn-containing Al-Zn-Mg-Cu-Zr alloy and the corresponding as-cast microstructure characteristics including grains and phases were thoroughly investigated. The results indicated that fine grain boundaries existed in these alloys and fine MgZn2 phases discontinuously distributed on them. Besides, AlZnMgCu eutectic phases and Sc, Zr-containing phases with flocculent morphology were observed. As scandium contents vary from 0.06 wt.% to 0.17 wt.%, the average grain size continuously decreased and its equiaxial characteristics were strengthened. Meanwhile, the content of AlZnMgCu eutectic phase showed a decrease trend. When scandium contents were 0.20 wt.% and 0.25 wt.%, no further enhancement on grain refinement was observed, so as to the reduction of AlZnMgCu eutectic phase content. Besides, Sc, Zr-containing phases with blocky morphology were observed and the alloy with a scandium content of 0.25 wt.% possessed a larger amount of blocky Sc, Zr-containing phase than the alloy with a scandium content of 0.20 wt.%. Grain refinement and reduction of AlZnMgCu eutectic phase content associated with scandium addition were discussed.

摘要

本文在一种高Zn含量Al-9.2Zn-2.0Mg-1.0Cu-0.11Zr合金中添加一系列的微量Sc元素(0.06 wt.%, 0.10 wt.%, 0.14 wt.%, 0.17 wt.%, 0.20 wt.%和0.25 wt.%), 研究了包含晶粒及第二相在内的铸态组织特征. 结果表明, 组织中出现细晶界, MgZn2相在该晶界上不连续分布. 此外, 发现了AlZnMgCu共晶相和具有絮状形貌的含Sc、 Zr相. 当Sc元素含量从0.06 wt.%增加到0.17 wt.%时, 平均晶粒尺寸持续降低, 晶粒趋于等轴. 同时, AlZnMgCu共晶相含量呈降低趋势. 当Sc元素含量为0.20 wt.%和0.25 wt.%时, 没有发现更进一步的晶粒细化效果, 且AlZnMgCu共晶相含量不再降低. 此外, 组织中出现具有块状形貌的含Sc、 Zr相, 且Sc元素含量为0.25 wt.%的合金中块状含Sc、 Zr相的数量多于Sc元素含量为0.20 wt.%的合金. 本文进一步讨论了添加Sc元素对细化晶粒及AlZnMgCu共晶相含量减少的影响.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys [J]. Materials & Design, 2014, 56: 862–871. DOI: https://doi.org/10.1016/j.matdes.2013.12.002.

    Article  Google Scholar 

  2. RAO A C U, VASU V, GOVINDARAJU M, et al. Stress corrosion cracking behaviour of 7xxx aluminum alloys: A literature review [J]. Transactions of Nonferrous Metals Society of China, 2016, 26(6): 1447–1471. DOI: https://doi.org/10.1016/S1003-6326(16)64220-6.

    Article  Google Scholar 

  3. ROMETSCH P A, ZHANG Yong, KNIGHT S. Heat treatment of 7xxx series aluminium alloys—Some recent developments [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2003–2017. DOI: https://doi.org/10.1016/S1003-6326(14)63306-9.

    Article  Google Scholar 

  4. AZARNIYA A, TAHERI A K, TAHERI K K. Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective [J]. Journal of Alloys and Compounds, 2019, 781: 945–983. DOI: https://doi.org/10.1016/j.jallcom.2018.11.286.

    Article  Google Scholar 

  5. WEI S, FENG Y, ZHANG H, et al. Influence of aging on microstructure, mechanical properties and stress corrosion cracking of 7136 aluminum alloy [J]. Journal of Central South University, 2021, 28: 2687–2700. DOI: https://doi.org/10.1007/s11771-021-4802-y.

    Article  Google Scholar 

  6. HE K, LI Q, LIU S, et al. Influence of pre-stretching on quench sensitive effect of high-strength Al-Zn-Mg-Cu-Zr alloy sheet [J]. Journal of Central South University, 2021, 28: 2660–2669. DOI: https://doi.org/10.1007/s11771-021-4800-0.

    Article  Google Scholar 

  7. LIU Jun-tao, ZHANG Yong-an, LI Xi-wu, et al. Phases and microstructures of high Zn-containing Al-Zn-Mg-Cu alloys [J]. Rare Metals, 2016, 35(5): 380–384. DOI: https://doi.org/10.1007/s12598-014-0222-6.

    Article  Google Scholar 

  8. WEN Kai, FAN Yun-qiang, WANG Guo-jun, et al. Aging behavior and fatigue crack propagation of high Zn-containing Al-Zn-Mg-Cu alloys with zinc variation [J]. Progress in Natural Science: Materials International, 2017, 27(2): 217–227. DOI: https://doi.org/10.1016/j.pnsc.2017.02.002.

    Article  Google Scholar 

  9. CHEN C, HAN W, QI M, et al. Microstructural evolution and mechanical properties of an ultrahigh-strength Al-Zn-Mg-Cu alloy via powder metallurgy and hot extrusion [J]. Journal of Central South University, 2021, 28: 1195–1205. DOI: https://doi.org/10.1007/s11771-021-4669-y.

    Article  Google Scholar 

  10. LI Hai-chao, CAO Fu-yang, GUO Shu, et al. Effects of Mg and Cu on microstructures and properties of spray-deposited Al-Zn-Mg-Cu alloys [J]. Journal of Alloys and Compounds, 2017, 719: 89–96. DOI: https://doi.org/10.1016/j.jallcom.2017.05.101.

    Article  Google Scholar 

  11. DONG Peng-xuan, CHEN Song-yi, CHEN Kang-hua. Effects of Cu content on microstructure and properties of super-high-strength Al-9.3Zn-2.4Mg-xCu-Zr alloy [J]. Journal of Alloys and Compounds, 2019, 788: 329–337. DOI: https://doi.org/10.1016/j.jallcom.2019.02.228.

    Article  Google Scholar 

  12. LIAO Yu-guo, HAN Xiao-qi, ZENG Miao-xia, et al. Influence of Cu on microstructure and tensile properties of 7XXX series aluminum alloy [J]. Materials & Design, 2015, 66: 581–586. DOI: https://doi.org/10.1016/j.matdes.2014.05.003.

    Article  Google Scholar 

  13. ZHAO Qing-ru, QIAN Zhao, CUI Xiao-li, et al. Influences of Fe, Si and homogenization on electrical conductivity and mechanical properties of dilute Al-Mg-Si alloy [J]. Journal of Alloys and Compounds, 2016, 666: 50–57. DOI: https://doi.org/10.1016/j.jallcom.2016.01.110.

    Article  Google Scholar 

  14. CURLE U A, CORNISH L A, GOVENDER G. Predicting yield strengths of Al-Zn-Mg-Cu-(Zr) aluminium alloys based on alloy composition or hardness [J]. Materials & Design, 2016, 99: 211–218. DOI: https://doi.org/10.1016/j.matdes.2016.03.071.

    Article  Google Scholar 

  15. WU Hao, WEN Sheng-ping, LU Jun-tai, et al. Microstructural evolution of new type Al-Zn-Mg-Cu alloy with Er and Zr additions during homogenization [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(7): 1476–1482. DOI: https://doi.org/10.1016/S1003-6326(17)60168-7.

    Article  Google Scholar 

  16. WU H, WEN S P, HUANG H, et al. Effects of homogenization on precipitation of Al3(Er, Zr) particles and recrystallization behavior in a new type Al-Zn-Mg-Er-Zr alloy [J]. Materials Science and Engineering A, 2017, 689: 313–322. DOI: https://doi.org/10.1016/j.msea.2017.02.071.

    Article  Google Scholar 

  17. LI Bo, PAN Qing-lin, CHEN Cong-ping, et al. Effects of solution treatment on microstructural and mechanical properties of Al-Zn-Mg alloy by microalloying with Sc and Zr [J]. Journal of Alloys and Compounds, 2016, 664: 553–564. DOI: https://doi.org/10.1016/j.jallcom.2016.01.016.

    Article  Google Scholar 

  18. YOGANJANEYULU G, BABU K A, VIGNESHWARAN S, et al. Microstructure and mechanical properties of cryorolled Al-6Zn-3Mg-2Cu-0.5Sc alloy [J]. Materials Letters, 2019, 253: 18–21. DOI: https://doi.org/10.1016/j.matlet.2019.06.023.

    Article  Google Scholar 

  19. EIVANI A R, AHMED H, ZHOU J, et al. An experimental and theoretical investigation of the formation of Zr-containing dispersoids in Al-4.5Zn-1Mg aluminum alloy [J]. Materials Science and Engineering A, 2010, 527(9): 2418–2430. DOI: https://doi.org/10.1016/j.msea.2010.01.012.

    Article  Google Scholar 

  20. LIAO Zhong-quan, LI Shi-chen, ZHENG Zi-qiao, et al. The effect of Ge addition on Al-3.5Cu-0.4Mg (wt.%) alloy [J]. Scripta Materialia, 2012, 66(7): 447–450. DOI: https://doi.org/10.1016/j.scriptamat.2011.12.011.

    Article  Google Scholar 

  21. OKLE P, LIN J D, ZHU Tian-yu, et al. Effect of microadditions of Ge, In or Sn on precipitation in dilute Al-Sc-Zr alloys [J]. Materials Science and Engineering A, 2019, 739: 427–436. DOI: https://doi.org/10.1016/j.msea.2018.10.058.

    Article  Google Scholar 

  22. CHEN Y, LIU C Y, ZHANG B, et al. Effects of friction stir processing and minor Sc addition on the microstructure, mechanical properties, and damping capacity of 7055 Al alloy [J]. Materials Characterization, 2018, 135: 25–31. DOI: https://doi.org/10.1016/j.matchar.2017.11.030.

    Article  Google Scholar 

  23. LI J H, WIESSNER M, ALBU M, et al. Correlative characterization of primary Al3(Sc, Zr) phase in an Al-Zn-Mg based alloy [J]. Materials Characterization, 2015, 102: 62–70. DOI: https://doi.org/10.1016/j.matchar.2015.01.018.

    Article  Google Scholar 

  24. LIU Chong-yu, TENG Guang-biao, MA Zong-yi, et al. Effects of Sc and Zr microalloying on the microstructure and mechanical properties of high Cu content 7xxx Al alloy [J]. International Journal of Minerals, Metallurgy and Materials, 2019, 26(12): 1559–1569. DOI: https://doi.org/10.1007/s12613-019-1840-7.

    Article  Google Scholar 

  25. ROGAL L, DUTKIEWICZ J, ATKINSON H V, et al. Characterization of semi-solid processing of aluminium alloy 7075 with Sc and Zr additions [J]. Materials Science and Engineering A, 2013, 580: 362–373. DOI: https://doi.org/10.1016/j.msea.2013.04.078.

    Article  Google Scholar 

  26. DENG Ying, YIN Zhi-min, ZHAO Kai, et al. Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al-Zn-Mg alloys [J]. Journal of Alloys and Compounds, 2012, 530: 71–80. DOI: https://doi.org/10.1016/j.jallcom.2012.03.108.

    Article  Google Scholar 

  27. LIU Jing, YAO Pei, ZHAO Nai-qin, et al. Effect of minor Sc and Zr on recrystallization behavior and mechanical properties of novel Al-Zn-Mg-Cu alloys [J]. Journal of Alloys and Compounds, 2016, 657: 717–725. DOI: https://doi.org/10.1016/j.jallcom.2015.10.122.

    Article  Google Scholar 

  28. ZHANG Miao, LIU Tao, HE Chun-nian, et al. Evolution of microstructure and properties of Al-Zn-Mg-Cu-Sc-Zr alloy during aging treatment [J]. Journal of Alloys and Compounds, 2016, 658: 946–951. DOI: https://doi.org/10.1016/j.jallcom.2015.10.296.

    Article  Google Scholar 

  29. SENKOV O N, BHAT R B, SENKOVA S V, et al. Microstructure and properties of cast ingots of Al-Zn-Mg-Cu alloys modified with Sc and Zr [J]. Metallurgical and Materials Transactions A, 2005, 36(8): 2115–2126. DOI: https://doi.org/10.1007/s11661-005-0332-8.

    Article  Google Scholar 

  30. LIU Li, JIA Ying-ying, JIANG Jian-tang, et al. The effect of Cu and Sc on the localized corrosion resistance of Al-Zn-Mg-X alloys [J]. Journal of Alloys and Compounds, 2019, 799: 1–14. DOI: https://doi.org/10.1016/j.jallcom.2019.05.189.

    Article  Google Scholar 

  31. LI Hai-chao, CAO Fu-yang, GUO Shu, et al. Microstructures and properties evolution of spray-deposited Al-Zn-Mg-Cu-Zr alloys with scandium addition [J]. Journal of Alloys and Compounds, 2017, 691: 482–488. DOI: https://doi.org/10.1016/j.jallcom.2016.08.255.

    Article  Google Scholar 

  32. ZHOU Le, PAN Hao, HYER H, et al. Microstructure and tensile property of a novel AlZnMgScZr alloy additively manufactured by gas atomization and laser powder bed fusion [J]. Scripta Materialia, 2019, 158: 24–28. DOI: https://doi.org/10.1016/j.scriptamat.2018.08.025.

    Article  Google Scholar 

  33. TENG G B, LIU C Y, MA Z Y, et al. Effects of minor Sc addition on the microstructure and mechanical properties of 7055 Al alloy during aging [J]. Materials Science and Engineering A, 2018, 713: 61–66. DOI: https://doi.org/10.1016/j.msea.2017.12.067.

    Article  Google Scholar 

  34. WU Ling-mei, WANG W H, HSU Y F, et al. Effects of homogenization treatment on recrystallization behavior and dispersoid distribution in an Al-Zn-Mg-Sc-Zr alloy [J]. Journal of Alloys and Compounds, 2008, 456(1, 2): 163–169. DOI: https://doi.org/10.1016/j.jallcom.2007.02.054.

    Article  Google Scholar 

  35. DENG Ying, YE Rui, XU Guo-fu, et al. Corrosion behaviour and mechanism of new aerospace Al-Zn-Mg alloy friction stir welded joints and the effects of secondary Al3ScxZr1−x nanoparticles [J]. Corrosion Science, 2015, 90: 359–374. DOI: https://doi.org/10.1016/j.corsci.2014.10.036.

    Article  Google Scholar 

  36. HUANG Xing, PAN Qing-lin, LI Bo, et al. Microstructure, mechanical properties and stress corrosion cracking of Al-Zn-Mg-Zr alloy sheet with trace amount of Sc [J]. Journal of Alloys and Compounds, 2015, 650: 805–820. DOI: https://doi.org/10.1016/j.jallcom.2015.08.011.

    Article  Google Scholar 

  37. WANG Gao-song, ZHAO Zhi-hao, ZHANG Yi-hang, et al. Effects of solution treatment on microstructure and mechanical properties of Al-9.0Zn-2.8Mg-2.5Cu-0.12Zr-0.03Sc alloy [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(9): 2537–2542. DOI: https://doi.org/10.1016/S1003-6326(13)62765-X.

    Article  Google Scholar 

  38. REN Jian, WANG Ri-chu, FENG Yan, et al. Microstructure evolution and mechanical properties of an ultrahigh strength Al-Zn-Mg-Cu-Zr-Sc (7055) alloy processed by modified powder hot extrusion with post aging [J]. Vacuum, 2019, 161: 434–442. DOI: https://doi.org/10.1016/j.vacuum.2019.01.013.

    Article  Google Scholar 

  39. COSTA S, PUGA H, BARBOSA J, et al. The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al-Sc alloys [J]. Materials & Design, 2012, 42: 347–352. DOI: https://doi.org/10.1016/j.matdes.2012.06.019.

    Article  Google Scholar 

  40. VLACH M, CIZEK J, KODETOVA V, et al. Phase transformations in novel hot-deformed Al-Zn-Mg-Cu-Si-Mn-Fe (-Sc-Zr) alloys [J]. Materials & Design, 2020, 193: 108821. DOI: https://doi.org/10.1016/j.matdes.2020.108821.

    Article  Google Scholar 

  41. VLACH M, KODETOVA V, CIZEK J, et al. Role of small addition of Sc and Zr in clustering and precipitation phenomena induced in AA7075 [J]. Metals, 2020, 11(1): 8. DOI: https://doi.org/10.3390/met11010008.

    Article  Google Scholar 

  42. VLACH M, ČÍŽEK J, KODETOVÁ V, et al. Annealing effects in cast commercial aluminium Al-Mg-Zn-Cu (-Sc-Zr) alloys [J]. Metals and Materials International, 2021, 27(5): 995–1004. DOI: https://doi.org/10.1007/s12540-019-00499-6.

    Article  Google Scholar 

  43. MANOHAR P A, FERRY M, CHANDRA T. Five decades of the zener equation [J]. ISIJ International, 1998, 38(9): 913–924. DOI: https://doi.org/10.2355/isijinternational.38.913.

    Article  Google Scholar 

  44. ZHOU Shi-ang, ZHANG Zhen, LI Ming, et al. Effect of Sc on microstructure and mechanical properties of as-cast Al-Mg alloys [J]. Materials & Design, 2016, 90: 1077–1084. DOI: https://doi.org/10.1016/j.matdes.2015.10.132.

    Article  Google Scholar 

  45. ZHOU Shi-ang, ZHANG Zhen, LI Ming, et al. Correlative characterization of primary particles formed in as-cast Al-Mg alloy containing a high level of Sc [J]. Materials Characterization, 2016, 118: 85–91. DOI: https://doi.org/10.1016/j.matchar.2016.05.011.

    Article  Google Scholar 

  46. TRUDONOSHYN O, PRACH O. Multistep nucleation and multi-modification effect of Sc in hypoeutectic Al-Mg-Si alloys [J]. Heliyon, 2019, 5(2): e01202. DOI: https://doi.org/10.1016/j.heliyon.2019.e01202.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by WEN Kai. LI Xi-wu and XIONG Bai-qing provided the measurements of grain size and grain shape deviation, and analyzed the measurement data. LIU Hong-lei and WANG Ying-jun participated in the preparation of ingots and samples. LI Zhi-hui and ZHANG Yong-an provided the observation data from scanning electron microscope. The initial draft of the manuscript was written by WEN Kai and LI Ya-nan. All authors replied to reviewers’ comments and revised the final version.

Corresponding authors

Correspondence to Xi-wu Li  (李锡武) or Bai-qing Xiong  (熊柏青).

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Foundation item: Projects(2020YFB0311400ZL, 2020YFF0218202) supported by the National Key R&D Program of China; Project supported by Youth Fund Project of GRINM Group Co., Ltd., China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, K., Li, Xw., Xiong, Bq. et al. Influence of minor Sc additions on grain refinement and microstructure characteristics of a high Zn-containing Al-Zn-Mg-Cu-Zr alloy. J. Cent. South Univ. 29, 780–794 (2022). https://doi.org/10.1007/s11771-022-4979-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4979-8

Key words

关键词

Navigation