Skip to main content
Log in

Preparation of porous silica from natural chlorite via selective acid leaching and its application in methylene blue adsorption

选择性酸浸热活化天然绿泥石制备多孔二氧化硅材料

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this study, porous silica with high surface area was prepared through selective leaching of thermally activated chlorite in HCl solution. In the process, chlorite was activated by pre-calcining treatment, then activated components (MgO, Al2O3, and Fe2O3) were selectively leached by acid solution, resulting in the formation of nanopores in situ. The morphology, structure, surface area and pore-size distribution of the material were characterized by XRD, TG/DSC, 27Al MAS NMR, SEM, TEM and N2 adsorption-desorption isotherms. The highest specific surface area (SBET=333 m2/g) was obtained by selectively leaching the 600 °C calcined chlorite from 3 mol/L HCl at 90 °C for 2 h. The pore sizes and specific surface areas can be controlled by calcination and leaching conditions. The 27Al MAS NMR spectra of the samples revealed the relationship between structural transformation and the selective acid leaching properties of thermal-activated chlorite, demonstrating that AlVI transfers into AlV when chlorite changes into activated chlorite during thermal activation, and the coordinations of Al has a significant effect on acid solubility of chlorite. The as-prepared porous silica showed favorable adsorption abilities with capacity of 148.79 mg/g for methylene blue at pH of about 7 and temperature of 25 °C, indicating its promising potential in adsorption application.

摘要

在本研究中, 通过选择性酸浸热活化的绿泥石制备出高表面积的多孔二氧化硅材料. 首先, 绿泥石通过高温预煅烧处理转变为热活化绿泥石, 再利用盐酸溶液对其进行酸处理, 结构中的活性成分(MgO、Al2O3和Fe2O3)被选择性地浸出, 从而在活化绿泥石的片状氧化硅骨架上原位形成纳米孔道, 最终得到片状多孔二氧化硅材料. 热活化绿泥石制备多孔二氧化硅的最佳工艺条为:绿泥石煅烧温度为600 °C, 反应温度为90 °C, 盐酸浓度为3 mol/L, 反应时间为2 h, 得到最大比表面积为333 m2/g. 通过27Al MAS NMR研究了热处理过程中绿泥石中Al 的结构变化和选择性酸浸特性之间的关系, 发现绿泥石在热活化过程中Al 配位结构由AlVI转变为AlV, Al 的配位对绿泥石的酸溶性有重要影响. 通过静态吸附实验探讨了制备的多孔二氧化硅对亚甲基蓝有机染料的吸附性能, 在pH值为7、温度为25 °C时, 对亚甲基蓝的最大饱和吸附量为148.79 mg/g, 表明其对有机染料具有良好的吸附作用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SCHÜTH F, SCHMIDT W. Microporous and mesoporous materials [J]. Advanced Engineering Materials, 2002, 4(5): 269–279. DOI: https://doi.org/10.1002/1527-2648(20020503)4:5<269:aid-adem269>3.0.co;2-7.

    Article  Google Scholar 

  2. WAN Ying, ZHAO Dong-yuan. On the controllable soft-templating approach to mesoporous silicates[J]. Chemical Reviews, 2007, 107(7): 2821–2860. DOI: https://doi.org/10.1021/cr068020s.

    Article  Google Scholar 

  3. LIANG Cheng-du, LI Zuo-jiang, DAI Sheng. Mesoporous carbon materials: Synthesis and modification [J]. Angewandte Chemie International Edition, 2008, 47(20): 3696–3717. DOI: https://doi.org/10.1002/anie.200702046.

    Article  Google Scholar 

  4. TANG Fang-qiong, LI Lin-lin, CHEN Dong. Mesoporous silica nanoparticles: Synthesis, biocompatibility and drug delivery [J]. Advanced Materials, 2012, 24(12): 1504–1534. DOI: https://doi.org/10.1002/adma.201104763.

    Article  Google Scholar 

  5. SHI Jian-lin. On the synergetic catalytic effect in heterogeneous nanocomposite catalysts [J]. Chemical Reviews, 2013, 113(3): 2139–2181. DOI:https://doi.org/10.1021/cr3002752.

    Article  Google Scholar 

  6. WANG Jie, HOU Guang-ya, WU Lian-kui, et al. A novel adsorbent of three-dimensional ordered macro/mesoporous carbon for removal of malachite green dye [J]. Journal of Central South University, 2020, 27(2): 388–402. DOI: https://doi.org/10.1007/s11771-020-4304-3.

    Article  Google Scholar 

  7. YAO Ling, YANG Hui, CHEN Zhong-shan, et al. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater [J]. Chemosphere, 2021, 273: 128576. DOI:https://doi.org/10.1016/j.chemosphere.2020.128576.

    Article  Google Scholar 

  8. LIU Xiao-lu, PANG Hong-wei, LIU Xue-wei, et al. Orderly porous covalent organic frameworks-based materials: Superior adsorbents for pollutants removal from aqueous solutions [J]. The Innovation, 2021, 2(1): 100076. DOI: https://doi.org/10.1016/j.xinn.2021.100076.

    Article  Google Scholar 

  9. KLEITZ F, CHOI S H, RYOO R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes [J]. Chemical Communications (Cambridge, England), 2003(17): 2136–2137. DOI:https://doi.org/10.1039/b306504a.

  10. TEMUUJIN J, BURMAA G, AMGALAN J, et al. Preparation of porous silica from mechanically activated kaolinite [J]. Journal of Porous Materials, 2001, 8(3): 233–238. DOI:https://doi.org/10.1023/A:1012244924490.

    Article  Google Scholar 

  11. TEMUUJIN J, OKADA K, MACKENZIE K J D. Preparation of porous silica from vermiculite by selective leaching [J]. Applied Clay Science, 2003, 22(4): 187–195. DOI:https://doi.org/10.1016/S0169-1317(02)00158-8.

    Article  Google Scholar 

  12. GUO Qun, ZHANG Zhi-zhi, ZHANG Xi-wen, et al. Preparation and characterization of mesoporous silica-pillared montmorillonite [J]. Journal of Porous Materials, 2009, 16(2): 209–213. DOI:https://doi.org/10.1007/s10934-008-9188-9.

    Article  Google Scholar 

  13. LI Guang-hui, CHENG Wei, JIANG Tao, et al. Preparation of porous silica by acid dissociation of thermally activated kaolinite [J]. Advanced Materials Research, 2011, 284–286: 1381–1384. DOI: https://doi.org/10.4028/www.scientific.net/amr.284-286.1381.

    Article  Google Scholar 

  14. ZHAO Qin-yi, LI Tong, CUI Chong, et al. Preparation of porous silica powder via selective acid leaching of calcined tobermorite [J]. Powder Technology, 2020, 375: 420–432. DOI:https://doi.org/10.1016/j.powtec.2020.08.008.

    Article  Google Scholar 

  15. WANG Wen-bo, DONG Wen-kai, TIAN Guang-yan, et al. Highly efficient self-template synthesis of porous silica nanorods from natural palygorskite [J]. Powder Technology, 2019, 354: 1–10. DOI:https://doi.org/10.1016/j.powtec.2019.05.075.

    Article  Google Scholar 

  16. CHEN Qing-ze, ZHU Run-liang, FU Hao-yang, et al. From natural clay minerals to porous silicon nanoparticles [J]. Microporous and Mesoporous Materials, 2018, 260: 76–83. DOI:https://doi.org/10.1016/j.micromeso.2017.10.033.

    Article  Google Scholar 

  17. ZHANG Liang-jing, HE Yuan, LÜ Peng, et al. Comparison of microwave and conventional heating routes for Kaolin thermal activation [J]. Journal of Central South University, 2020, 27(9): 2494–2506. DOI:https://doi.org/10.1007/s11771-020-4475-y.

    Article  Google Scholar 

  18. OKADA K, NAKAZAWA N, KAMESHIMA Y, et al. Preparation and porous properties of materials prepared by selective leaching of phlogopite [J]. Clays and Clay Minerals, 2002, 50(5): 624–632. DOI: https://doi.org/10.1346/000986002320679503.

    Article  Google Scholar 

  19. ZHAN Wu-di. The dehydroxylation of chlorite and the formation of topotactic product phases [J]. Clays and Clay Minerals, 1995, 43(5): 622–629. DOI: https://doi.org/10.1346/ccmn.1995.0430512.

    Article  Google Scholar 

  20. VILLIÉRAS F, YVON J, FRANÇOIS M, et al. Micropore formation due to thermal decomposition of hydroxide layer of Mg-chlorites: Interactions with water [J]. Applied Clay Science, 1993, 8(2, 3): 147–168. DOI: https://doi.org/10.1016/0169-1317(93)90034-X.

    Article  Google Scholar 

  21. OKADA K, ARIMITSU N, KAMESHIMA Y, et al. Preparation of porous silica from chlorite by selective acid leaching [J]. Applied Clay Science, 2005, 30(2): 116–124. DOI:https://doi.org/10.1016/j.clay.2005.04.001.

    Article  Google Scholar 

  22. STEUDEL A, KLEEBERG R, KOCH C B, et al. Thermal behavior of chlorites of the clinochlore-chamosite solid solution series: Oxidation of structural iron, hydrogen release and dehydroxylation [J]. Applied Clay Science, 2016, 132–133: 626–634. DOI:https://doi.org/10.1016/j.clay.2016.08.013.

    Article  Google Scholar 

  23. ZAZZI Å, HIRSCH T K, LEONOVA E, et al. Structural investigations of natural and synthetic chlorite minerals by X-ray diffraction, mössbauer spectroscopy and solid-state nuclear magnetic resonance [J]. Clays and Clay Minerals, 2006, 54(2): 252–265. DOI:https://doi.org/10.1346/ccmn.2006.0540210.

    Article  Google Scholar 

  24. TEMUUJIN J, OKADA K, MACKENZIE K J D, et al. Characterization of porous silica prepared from mechanically amorphized kaolinite by selective leaching [J]. Powder Technology, 2001, 121(2, 3): 259–262. DOI: https://doi.org/10.1016/S0032-5910(01)00363-1.

    Article  Google Scholar 

  25. BARRETT E P, JOYNER L G, HALENDA P P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms [J]. Journal of the American Chemical Society, 1951, 73(1): 373–380. DOI:https://doi.org/10.1021/ja01145a126.

    Article  Google Scholar 

  26. DU Chun-fang, YANG Hua-ming. Investigation of the physicochemical aspects from natural Kaolin to Al-MCM-41 mesoporous materials [J]. Journal of Colloid and Interface Science, 2012, 369(1): 216–222. DOI: https://doi.org/10.1016/j.jcis.2011.12.041.

    Article  Google Scholar 

  27. LI Tian-tian, SHU Zhu, ZHOU Jun, et al. Template-free synthesis of Kaolin-based mesoporous silica with improved specific surface area by a novel approach [J]. Applied Clay Science, 2015, 107: 182–187. DOI: https://doi.org/10.1016/j.clay.2015.01.022.

    Article  Google Scholar 

  28. SHU Zhu, CHEN Yun, ZHOU Jun, et al. Nanoporous-walled silica and alumina nanotubes derived from halloysite: Controllable preparation and their dye adsorption applications [J]. Applied Clay Science, 2015, 112–113: 17–24. DOI:https://doi.org/10.1016/j.clay.2015.04.014.

    Article  Google Scholar 

  29. SHU Zhu, LI Tian-tian, ZHOU Jun, et al. Template-free preparation of mesoporous silica and alumina from natural kaolinite and their application in methylene blue adsorption [J]. Applied Clay Science, 2014, 102: 33–40. DOI:https://doi.org/10.1016/j.clay.2014.10.006.

    Article  Google Scholar 

  30. BALATHANIGAIMANI M S, SHIM W G, PARK K H, et al. Effects of structural and surface energetic heterogeneity properties of novel corn grain-based activated carbons on dye adsorption [J]. Microporous and Mesoporous Materials, 2009, 118(1–3): 232–238. DOI: https://doi.org/10.1016/j.micromeso.2008.08.028.

    Article  Google Scholar 

  31. ZHONG Xin, LU Zhi-peng, LIANG Wen, et al. The magnetic covalent organic framework as a platform for high-performance extraction of Cr(VI) and bisphenol a from aqueous solution [J]. Journal of Hazardous Materials, 2020, 393: 122353. DOI:https://doi.org/10.1016/j.jhazmat.2020.122353.

    Article  Google Scholar 

  32. ZHU Yu-ling, WANG Wen-zhong, NI Jian, et al. Cultivation of granules containing anaerobic decolorization and aerobic degradation cultures for the complete mineralization of azo dyes in wastewater [J]. Chemosphere, 2020, 246: 125753. DOI: https://doi.org/10.1016/j.chemosphere.2019.125753.

    Article  Google Scholar 

  33. WANG Hui-hui, GUO Han, ZHANG Ning, et al. Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and bisphenol A: ESR, XPS, and EXAFS investigation [J]. Environmental Science & Technology, 2019, 53(11): 6454–6461. DOI: https://doi.org/10.1021/acs.est.8b06913.

    Article  Google Scholar 

  34. WAN Tian, LU Song-hua, CHENG Wen, et al. A spectroscopic and theoretical investigation of interaction mechanisms of tetracycline and polystyrene nanospheres under different conditions [J]. Environmental Pollution, 2019, 249: 398–405. DOI:https://doi.org/10.1016/j.envpol.2019.03.049.

    Article  Google Scholar 

  35. ZHOU Chun-yu, GAO Qiang, LUO Wen-jun, et al. Preparation, characterization and adsorption evaluation of spherical mesoporous Al-MCM-41 from coal fly ash [J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 52: 147–157. DOI:https://doi.org/10.1016/j.jtice.2015.02.014.

    Article  Google Scholar 

  36. AUTA M, HAMEED B H. Modified mesoporous clay adsorbent for adsorption isotherm and kinetics of methylene blue [J]. Chemical Engineering Journal, 2012, 198–199: 219–227. DOI:https://doi.org/10.1016/j.cej.2012.05.075.

    Article  Google Scholar 

  37. NOGUEIRA F G E, LOPES J H, SILVA A C, et al. Reactive adsorption of methylene blue on montmorillonite via an ESI-MS study [J]. Applied Clay Science, 2009, 43(2): 190–195. DOI:https://doi.org/10.1016/j.clay.2008.08.004.

    Article  Google Scholar 

  38. LIU Tong-hao, LI Yan-hui, DU Qiu-ju, et al. Adsorption of methylene blue from aqueous solution by graphene [J]. Colloids and Surfaces B: Biointerfaces, 2012, 90: 197–203. DOI:https://doi.org/10.1016/j.colsurfb.2011.10.019.

    Article  Google Scholar 

  39. QIAO Xiu-qing, HU Fu-chao, TIAN Feng-yu, et al. Equilibrium and kinetic studies on MB adsorption by ultrathin 2D MoS2 nanosheets [J]. RSC Advances, 2016, 6(14): 11631–11636. DOI:https://doi.org/10.1039/c5ra24328a.

    Article  Google Scholar 

  40. AKGÜL M, KARABAKAN A. Promoted dye adsorption performance over desilicated natural zeolite [J]. Microporous and Mesoporous Materials, 2011, 145(1–3): 157–164. DOI: https://doi.org/10.1016/j.micromeso.2011.05.012.

    Article  Google Scholar 

  41. ALBADARIN A B, COLLINS M N, NAUSHAD M, et al. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue [J]. Chemical Engineering Journal, 2017, 307: 264–272. DOI:https://doi.org/10.1016/j.cej.2016.08.089.

    Article  Google Scholar 

  42. DAI Hong-jie, HUANG Yue, HUANG Hui-hua. Eco-friendly polyvinyl alcohol/carboxymethyl cellulose hydrogels reinforced with graphene oxide and bentonite for enhanced adsorption of methylene blue [J]. Carbohydrate Polymers, 2018, 185: 1–11. DOI:https://doi.org/10.1016/j.carbpol.2017.12.073.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Cui  (崔崇).

Additional information

Foundation item

Project(51772153) supported by the National Natural Science Foundation of China

Contributors

WANG Zhi-zeng and CUI Chong provided the concept and edited the draft of manuscript. CUI Chong provided the field test conditions. WANG Zhi-zeng, ZHAO Qin-yi and WANG Dong-yun analyzed the results. WANG Zhi-zeng conducted the literature review and wrote the first draft of the manuscript. All authors replied to reviewers’ comments and revised the final version.

Conflict of interest

WANG Zhi-zeng, ZHAO Qin-yi, WANG Dong-yun and CUI Chong declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Zz., Zhao, Qy., Wang, Dy. et al. Preparation of porous silica from natural chlorite via selective acid leaching and its application in methylene blue adsorption. J. Cent. South Univ. 29, 1173–1184 (2022). https://doi.org/10.1007/s11771-022-4970-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4970-4

Key words

关键词

Navigation