Skip to main content
Log in

Effects of interrupted ageing and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion behavior of Al-Mg-Si-Zn alloy

断续时效和非对称轧制对Al-Mg-Si-Zn 合金组织、 力学性能和晶间腐蚀行为的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Effects of interrupted ageing (T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion (IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy has the lowest strength and the worst IGC resistance, while the T6I6 alloy has higher strength and better IGC resistance. What’s more, the alloy treated by pre-rolling deformation has higher strength and better IGC resistance; and the alloy treated by the pre-asymmetry rolling achieves the highest strength, the best IGC resistance and lower elongation. The mechanical properties depend on microstructures such as the grain size, texture, dislocation density and precipitation, the grain boundary misorientation and grain boundary microstructure are responsible for the IGC resistance.

摘要

研究了断续时效(T6I6)和非对称轧制对Al-Mg-Si-Zn合金组织、 力学性能和晶间腐蚀(IGC)行为的影响. 结果表明, T6合金具有最低的强度和最差的IGC抗性, 而T6I6合金具有较高的强度和较好的IGC抗性. 另外, 引入预轧制变形处理后的合金具有更高的强度和更好的抗IGC性能; 经不对称预轧制处理的合金强度最高, 抗IGC性能最好, 伸长率较低. 力学性能取决于微观组织的差异性, 如晶粒尺寸、 织构、 位错密度和沉淀析出相; 晶界取向差和晶界微观结构是影响IGC抗性的主要原因.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YANG Wen-chao, HUANG Lan-ping, ZHANG Rui-rong, et al. Electron microscopy studies of the age-hardening behaviors in 6005A alloy and microstructural characterizations of precipitates [J]. Journal of Alloys and Compounds, 2012, 514: 220–233. DOI: https://doi.org/10.1016/j.jallcom.2011.11.074.

    Article  Google Scholar 

  2. DENG Yun-lai, ZHANG Xin-ming. Development of aluminium and aluminium alloy [J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2115–2141. DOI: https://doi.org/10.19476/j.ysxb.1004.0609.2019.09.14. (in Chinese)

    Google Scholar 

  3. WILLIAMS J C, STARKE E A. Progress in structural materials for aerospace systems [J]. Acta Materialia, 2003, 51(19): 5775–5799. DOI: https://doi.org/10.1016/j.actamat.2003.08.023.

    Article  Google Scholar 

  4. PRILLHOFER R, RANK G, BERNEDER J, et al. Property criteria for automotive Al-Mg-Si sheet alloys [J]. Materials (Basel, Switzerland), 2014, 7(7): 5047–5068. DOI: https://doi.org/10.3390/ma7075047.

    Article  Google Scholar 

  5. BHATTAMISHRA A K, LAL K. Microstructural studies on the effect of Si and Cr on the intergranular corrosion in Al-Mg-Si alloys [J]. Materials & Design, 1997, 18(1): 25–28. DOI: https://doi.org/10.1016/S0261-3069(97)00027-7.

    Article  Google Scholar 

  6. BUCHANAN K, COLAS K, RIBIS J, et al. Analysis of the metastable precipitates in peak-hardness aged Al-Mg-Si(-Cu) alloys with differing Si contents [J]. Acta Materialia, 2017, 132: 209–221. DOI: https://doi.org/10.1016/j.actamat.2017.04.037.

    Article  Google Scholar 

  7. JIANG Sheng-yu, WANG Rui-hong. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al-Mg-Si-Sc alloys [J]. Journal of Materials Science & Technology, 2019, 35(7): 1354–1363. DOI: https://doi.org/10.1016/j.jmst.2019.03.011.

    Article  Google Scholar 

  8. XU Xue-xuan, YANG Zhao, YE Yu-long, et al. Effects of various Mg/Si ratios on microstructure and performance property of Al-Mg-Si alloy cables [J]. Materials Characterization, 2016, 119: 114–119. DOI: https://doi.org/10.1016/j.matchar.2016.07.011.

    Article  Google Scholar 

  9. SVENNINGSEN G, LARSEN M H, WALMSLEY J C, et al. Effect of artificial aging on intergranular corrosion of extruded AlMgSi alloy with small Cu content [J]. Corrosion Science, 2006, 48(6): 1528–1543. DOI: https://doi.org/10.1016/j.corsci.2005.05.045.

    Article  Google Scholar 

  10. LARSEN M H, WALMSLEY J C, LUNDER O, et al. Intergranular corrosion of copper-containing AA6xxx AlMgSi aluminum alloys [J]. Journal of the Electrochemical Society, 2008, 155(11): C550. DOI: https://doi.org/10.1149/1.2976774.

    Article  Google Scholar 

  11. GUO M X, SHA G, CAO L Y, et al. Enhanced bakehardening response of an Al-Mg-Si-Cu alloy with Zn addition [J]. Materials Chemistry and Physics, 2015, 162: 15–19. DOI: https://doi.org/10.1016/j.matchemphys.2015.07.033.

    Article  Google Scholar 

  12. SAITO T, WENNER S, OSMUNDSEN E, et al. The effect of Zn on precipitation in Al-Mg-Si alloys [J]. Philosophical Magazine, 2014, 94(21): 2410–2425. DOI: https://doi.org/10.1080/14786435.2014.913819.

    Article  Google Scholar 

  13. DIF R, BÈS B, EHRSTRÖM J C, et al. Understanding and modelling the mechanical and corrosion properties of 6056 for aerospace applications [J]. Materials Science Forum, 2000, 331–337: 1613–1618. DOI: https://doi.org/10.4028/www.scientific.net/msf.331-337.1613.

    Article  Google Scholar 

  14. WANG Zhi-xiu, LI Hai, MIAO Fen-fen, et al. Improving the intergranular corrosion resistance of Al-Mg-Si-Cu alloys without strength loss by a two-step aging treatment [J]. Materials Science and Engineering A, 2014, 590: 267–273. DOI: https://doi.org/10.1016/j.msea.2013.10.001.

    Article  Google Scholar 

  15. LI Hai, MAO Qing-zhong, WANG Zhi-xiu, et al. Simultaneously enhancing the tensile properties and intergranular corrosion resistance of Al-Mg-Si-Cu alloys by a thermo-mechanical treatment [J]. Materials Science and Engineering A, 2014, 617: 165–174. DOI: https://doi.org/10.1016/j.msea.2014.08.045.

    Article  Google Scholar 

  16. BUHA J, LUMLEY R N, CROSKY A G. Microstructural development and mechanical properties of interrupted aged Al-Mg-Si-Cu alloy [J]. Metallurgical and Materials Transactions A, 2006, 37(10): 3119–3130. DOI: https://doi.org/10.1007/s11661-006-0192-x.

    Article  Google Scholar 

  17. BUHA J, LUMLEY R N, CROSKY A G, et al. Secondary precipitation in an Al-Mg-Si-Cu alloy [J]. Acta Materialia, 2007, 55(9): 3015–3024. DOI: https://doi.org/10.1016/j.actamat.2007.01.006.

    Article  Google Scholar 

  18. XU Xue-hong, DENG Yun-lai, CHI Shui-qing, et al. Effect of interrupted ageing treatment on the mechanical properties and intergranular corrosion behavior of Al-Mg-Si alloys [J]. Journal of Materials Research and Technology, 2020, 9(1): 230–241. DOI: https://doi.org/10.1016/j.jmrt.2019.10.050.

    Article  Google Scholar 

  19. CUI Q, OHORI K. Grain refinement of high purity aluminium by asymmetric rolling [J]. Materials Science and Technology, 2000, 16(10): 1095–1101. DOI: https://doi.org/10.1179/026708300101507019.

    Article  Google Scholar 

  20. WRONSKI S, BACROIX B. Microstructure evolution and grain refinement in asymmetrically rolled aluminium [J]. Acta Materialia, 2014, 76: 404–412. DOI: https://doi.org/10.1016/j.actamat.2014.05.034.

    Article  Google Scholar 

  21. MA Cun-qiang, HOU Long-gang, ZHANG Ji-shan, et al. Effect of deformation routes on the microstructures and mechanical properties of the asymmetrical rolled 7050 Aluminum alloy plates [J]. Materials Science and Engineering A, 2018, 733: 307–315. DOI: https://doi.org/10.1016/j.msea.2018.07.060.

    Article  Google Scholar 

  22. MAGALHÃES D C C, KLIAUGA A M, FERRANTE M, et al. Asymmetric cryorolling of AA6061 Al alloy: Strain distribution, texture and age hardening behavior [J]. Materials Science and Engineering A, 2018, 736: 53–60. DOI: https://doi.org/10.1016/j.msea.2018.08.075.

    Article  Google Scholar 

  23. AMEGADZIE M Y, BISHOP D P. Effect of asymmetric rolling on the microstructure and mechanical properties of wrought 6061 aluminum [J]. Materials Today Communications, 2020, 25: 101283. DOI: https://doi.org/10.1016/j.mtcomm.2020.101283.

    Article  Google Scholar 

  24. JIN H, LLOYD D J. The different effects of asymmetric rolling and surface friction on formation of shear texture in aluminium alloy AA5754 [J]. Materials Science and Technology, 2010, 26(6): 754–760. DOI: https://doi.org/10.1179/174328409X405634.

    Article  Google Scholar 

  25. STARINK M J, WANG S C. A model for the yield strength of overaged Al-Zn-Mg-Cu alloys [J]. Acta Materialia, 2003, 51(17): 5131–5150. DOI: https://doi.org/10.1016/S1359-6454(03)00363-X.

    Article  Google Scholar 

  26. TEMPUS G, CALLES W, SCHARF G. Influence of extrusion process parameters and texture on mechanical properties of Al-Li extrusions [J]. Materials Science and Technology, 1991, 7(10): 937–946. DOI: https://doi.org/10.1179/mst.1991.7.10.937.

    Article  Google Scholar 

  27. ZRIBI Z, KTARI H H, HERBST F, et al. EBSD, XRD and SRS characterization of a casting Al-7wt%Si alloy processed by equal channel angular extrusion: Dislocation density evaluation [J]. Materials Characterization, 2019, 153: 190–198. DOI: https://doi.org/10.1016/j.matchar.2019.04.044.

    Article  Google Scholar 

  28. HU Yan-ying, LIU Hui-jie, FUJII H. Improving the mechanical properties of 2219-T6 aluminum alloy joints by ultrasonic vibrations during friction stir welding [J]. Journal of Materials Processing Technology, 2019, 271: 75–84. DOI: https://doi.org/10.1016/j.jmatprotec.2019.03.013.

    Article  Google Scholar 

  29. KONIJNENBERG P J, ZAEFFERER S, RAABE D. Assessment of geometrically necessary dislocation levels derived by 3D EBSD [J]. Acta Materialia, 2015, 99: 402–414. DOI: https://doi.org/10.1016/j.actamat.2015.06.051.

    Article  Google Scholar 

  30. RISANTI D D, YIN M, DEL CASTILLO P E J R D, et al. A systematic study of the effect of interrupted ageing conditions on the strength and toughness development of AA6061 [J]. Materials Science and Engineering A, 2009, 523(1, 2): 99–111. DOI: https://doi.org/10.1016/j.msea.2009.06.044.

    Article  Google Scholar 

  31. DING Li-peng, JIA Zhi-hong, NIE Jian-feng, et al. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy [J]. Acta Materialia, 2018, 145: 437–450. DOI: https://doi.org/10.1016/j.actamat.2017.12.036.

    Article  Google Scholar 

  32. YANG Wen-chao, WANG Ming-pu, ZHANG Rui-rong, et al. The diffraction patterns from β′ precipitates in 12 orientations in Al-Mg-Si alloy [J]. Scripta Materialia, 2010, 62(9): 705–708. DOI: https://doi.org/10.1016/j.scriptamat.2010.01.039.

    Article  Google Scholar 

  33. DORIN T, DESCHAMPS A, DE GEUSER F, et al. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al-Cu-Li alloy [J]. Acta Materialia, 2014, 75: 134–146. DOI: https://doi.org/10.1016/j.actamat.2014.04.046.

    Article  Google Scholar 

  34. RODGERS B I, PRANGNELL P B. Quantification of the influence of increased pre-stretching on microstructure-strength relationships in the Al-Cu-Li alloy AA2195 [J]. Acta Materialia, 2016, 108: 55–67. DOI: https://doi.org/10.1016/j.actamat.2016.02.017.

    Article  Google Scholar 

  35. ZHENG Zi-qiao. Fundamentals of Materials Science [M]. Changsha: Central South University Press, 2005, 12: 477–481. (in Chinese)

    Google Scholar 

  36. KUMAR N, RAO P N, JAYAGANTHAN R, et al. Effect of cryorolling and annealing on recovery, recrystallisation, grain growth and their influence on mechanical and corrosion behaviour of 6082 Al alloy [J]. Materials Chemistry and Physics, 2015, 165: 177–187. DOI: https://doi.org/10.1016/j.matchemphys.2015.09.014.

    Article  Google Scholar 

  37. XIE Yuan-kang, DENG Yun-lai, WANG Yu, et al. Effect of asymmetric rolling and subsequent ageing on the microstructure, texture and mechanical properties of the Al-Cu-Li alloy [J]. Journal of Alloys and Compounds, 2020, 836: 155445. DOI: https://doi.org/10.1016/j.jallcom.2020.155445.

    Article  Google Scholar 

  38. LI Hai, ZHAO Pei-pei, WANG Zhi-xiu, et al. The intergranular corrosion susceptibility of a heavily overaged Al-Mg-Si-Cu alloy [J]. Corrosion Science, 2016, 107: 113–122. DOI: https://doi.org/10.1016/j.corsci.2016.02.025.

    Article  Google Scholar 

  39. MINODA T, YOSHIDA H. Effect of grain boundary characteristics on intergranular corrosion resistance of 6061 aluminum alloy extrusion [J]. Metallurgical and Materials Transactions A, 2002, 33(9): 2891–2898. DOI: https://doi.org/10.1007/s11661-002-0274-3.

    Article  Google Scholar 

  40. WANG Zhi-xiu, ZHU Fan, ZHENG Kai, et al. Effect of the thickness reduction on intergranular corrosion in an under-aged Al-Mg-Si-Cu alloy during cold-rolling [J]. Corrosion Science, 2018, 142: 201–212. DOI: https://doi.org/10.1016/j.corsci.2018.07.018.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

TIAN Ai-qin’s contributions are formal analysis, investigation, writing original draft, software and data curation. DENG Yun-lai’s contributions are conceptualization, funding acquisition and project administration. XU Xuehong’s contributions are formal analysis and supervision. SUN Lin’s contributions are project administration and resources.

Corresponding author

Correspondence to Yun-lai Deng  (邓运来).

Ethics declarations

TIAN Ai-qin, XU Xue-hong, SUN Lin and DENG Yun-lai declare that they have no conflict of interest.

Additional information

Foundation item: Project(TC190H3ZV/2) supported by the National Building Project of Application Demonstration Platform on New Materials Products, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Aq., Xu, Xh., Sun, L. et al. Effects of interrupted ageing and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion behavior of Al-Mg-Si-Zn alloy. J. Cent. South Univ. 29, 821–835 (2022). https://doi.org/10.1007/s11771-022-4967-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4967-z

Key words

关键词

Navigation