Skip to main content
Log in

Effects of laser shock peening on fatigue crack growth rate and fracture properties of AA2524 aluminum alloy

激光喷丸对AA2524铝合金疲劳和断裂性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to prolong the service life of aircraft skin made from AA2524, the effects of laser shock peening (LSP) on fatigue crack growth (FCG) rate and fracture toughness (Kc) of AA2524 were investigated. Multiple LSP treatment was performed on compact tension (CT) specimen from single side and double sides. The surface integrity was measured with Vickers hardness tester, X-ray diffractometer and confocal laser scanning microscope, respectively. FCG rate test and fracture toughness test under plane stress were carried out after LSP treatment. The microstructure features of cross-sections were observed with scanning electron microscope. The results showed that the micro-hardness and residual stress of CT specimens were increased dramatically after LSP treatment. Compared to the base metal (BM), the fatigue life was prolonged by 2.4 times and fracture toughness was increased by 22% after multiple LSP.

摘要

为延长机身蒙皮材料服役寿命对AA2524铝合金进行激光喷丸处理, 研究激光喷丸对AA2524铝合金疲劳和断裂性能的影响. 对紧凑拉伸(CT)试样经不同的喷丸次数和单面/双面激光喷丸后采用显微硬度计、 X射线残余应力仪和超景深显微镜进行表面完整性测量, 激光喷丸后开展疲劳裂纹扩展试验(FCG)和断裂韧性实验(Kc), 采用扫描电镜对断口微观组织进行观测. 结果表明: 经激光喷丸处理后, CT试样的显微硬度和残余应力均显著提高; 与母材(BM)相比, 单面激光喷丸3次后试样疲劳寿命延长了2.4倍, 断裂韧性提高了22%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VARSHNEY D, KUMAR K. Application and use of different aluminium alloys with respect to workability, strength and welding parameter optimization [J]. Ain Shams Engineering Journal, 2020, 12: 1143–1152

    Article  Google Scholar 

  2. DURSUN T, SOUTIS C. Recent developments in advanced aircraft aluminium alloys [J]. Materials & Design, 2014, 56: 862–871. DOI: https://doi.org/10.1016/j.matdes.2013.12.002.

    Article  Google Scholar 

  3. WILLIAMS J C, STARKE E A. Progress in structural materials for aerospace systems [J]. Acta Materialia, 2003, 51(19): 5775–5799. DOI: https://doi.org/10.1016/j.actamat.2003.08.023.

    Article  Google Scholar 

  4. WEI S L, FENG Y, ZHANG H, et al. Influence of aging on microstructure, mechanical properties and stress corrosion cracking of 7136 aluminum alloy [J]. Journal of Central South University, 2021, 28(9): 2687–2700. DOI: https://doi.org/10.1007/s11771-021-4802-y.

    Article  Google Scholar 

  5. HU J L, WU X J, BO H, et al. Dislocation density model and microstructure of 7A85 aluminum alloy during thermal deformation [J]. Journal of Central South University, 2021, 28(10): 2999–3007. DOI: https://doi.org/10.1007/s11771-021-4832-5.

    Article  Google Scholar 

  6. AAMIR M, GIASIN K, TOLOUEI-RAD M, et al. A review: Drilling performance and hole quality of aluminium alloys for aerospace applications [J]. Journal of Materials Research and Technology, 2020, 9(6): 12484–12500. DOI: https://doi.org/10.1016/j.jmrt.2020.09.003.

    Article  Google Scholar 

  7. ZHANG Bing, TAO Chun-hu, LIU Chang-kui. Cracking analysis on joint lug of aluminum alloy framework of an airplane [J]. Engineering Failure Analysis, 2013, 35: 82–87. DOI: https://doi.org/10.1016/j.engfailanal.2012.11.014.

    Article  Google Scholar 

  8. WANG Hao, KALCHEV Y, WANG Hong-cai, et al. Surface modification of NiTi alloy by ultrashort pulsed laser shock peening [J]. Surface and Coatings Technology, 2020, 394: 125899. DOI: https://doi.org/10.1016/j.surfcoat.2020.125899.

    Article  Google Scholar 

  9. HUANG S, ZHOU J Z, SHENG J, et al. Effects of laser energy on fatigue crack growth properties of 6061-T6 aluminum alloy subjected to multiple laser peening [J]. Engineering Fracture Mechanics, 2013, 99: 87–100. DOI: https://doi.org/10.1016/j.engfracmech.2013.01.011.

    Article  Google Scholar 

  10. CHAHARDEHI A, BRENNAN F P, STEUWER A. The effect of residual stresses arising from laser shock peening on fatigue crack growth [J]. Engineering Fracture Mechanics, 2010, 77(11): 2033–2039. DOI: https://doi.org/10.1016/j.engfracmech.2010.03.033.

    Article  Google Scholar 

  11. LU Jin-zhong, LU Hai-fei, XU Xiang, et al. High-performance integrated additive manufacturing with laser shock peening-induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components [J]. International Journal of Machine Tools and Manufacture, 2020, 148: 103475. DOI: https://doi.org/10.1016/j.ijmachtools.2019.103475.

    Article  Google Scholar 

  12. WANG Chang-yu, LUO Kai-yu, BU Xing-yu, et al. Laser shock peening-induced surface gradient stress distribution and extension mechanism in corrosion fatigue life of AISI 420 stainless steel [J]. Corrosion Science, 2020, 177: 109027. DOI: https://doi.org/10.1016/j.corsci.2020.109027.

    Article  Google Scholar 

  13. ZHANG Xing-quan, CHEN Liu-san, YU Xiao-liu, et al. Effect of laser shock processing on fatigue life of fastener hole [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(4): 969–974. DOI: https://doi.org/10.1016/S1003-6326(14)63150-2.

    Article  Google Scholar 

  14. SRIVATSAN T S, KOLAR D, MAGNUSEN P. Influence of temperature on cyclic stress response, strain resistance, and fracture behavior of aluminum alloy 2524 [J]. Materials Science and Engineering A, 2001, 314(1, 2): 118–130. DOI: https://doi.org/10.1016/S0921-5093(00)01912-2.

    Article  Google Scholar 

  15. HUANG S, ZHOU J Z, SHENG J, et al. Effects of laser peening with different coverage areas on fatigue crack growth properties of 6061-T6 aluminum alloy [J]. International Journal of Fatigue, 2013, 47: 292–299. DOI: https://doi.org/10.1016/j.ijfatigue.2012.09.010.

    Article  Google Scholar 

  16. RUBIO-GONZÁLEZ C, OCAÑA J L, GOMEZ-ROSAS G, et al. Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy [J]. Materials Science and Engineering A, 2004, 386(1, 2): 291–295. DOI: https://doi.org/10.1016/j.msea.2004.07.025.

    Article  Google Scholar 

  17. FABBRO R, FOURNIER J, BALLARD P, et al. Physical study of laser-produced plasma in confined geometry [J]. Journal of Applied Physics, 1990, 68(2): 775–784. DOI: https://doi.org/10.1063/1.346783.

    Article  Google Scholar 

  18. LUO K Y, JING X, SHENG J, et al. Characterization and analyses on micro-hardness, residual stress and microstructure in laser cladding coating of 316L stainless steel subjected to massive LSP treatment [J]. Journal of Alloys and Compounds, 2016, 673: 158–169. DOI: https://doi.org/10.1016/j.jallcom.2016.02.266.

    Article  Google Scholar 

  19. GRANADOS-ALEJO V, RUBIO-GONZALEZ C, PARRA-TORRES Y, et al. Influence of laser peening on fatigue crack initiation of notched aluminum plates [J]. Structural Engineering and Mechanics, 2017, 62(6): 739–748. DOI: https://doi.org/10.12989/sem.2017.62.6.739.

    Google Scholar 

  20. LIU Wen-cai, WU Guo-hua, ZHAI Chun-quan, et al. Grain refinement and fatigue strengthening mechanisms in as-extruded Mg-6Zn-0.5Zr and Mg-10Gd-3Y-0.5Zr magnesium alloys by shot peening [J]. International Journal of Plasticity, 2013, 49: 16–35. DOI: https://doi.org/10.1016/j.ijplas.2013.02.015.

    Article  Google Scholar 

  21. GOLDSTEIN R V, OSIPENKO N M. Initiation of a secondary crack across a frictional interface [J]. Engineering Fracture Mechanics, 2015, 140: 92–105. DOI: https://doi.org/10.1016/j.engfracmech.2015.03.036.

    Article  Google Scholar 

  22. AHMADI M H, MOLLADAVOODI H. An inelastic-damage micromechanical model based on the wing- and secondary-cracking mechanisms under dynamic loading [J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102618. DOI: https://doi.org/10.1016/j.tafmec.2020.102618.

    Article  Google Scholar 

  23. YIN De-yan, LIU Hui-qun, CHEN Yu-qiang, et al. Effect of grain size on fatigue-crack growth in 2524 aluminium alloy [J]. International Journal of Fatigue, 2016, 84: 9–16. DOI: https://doi.org/10.1016/j.ijfatigue.2015.11.011.

    Article  Google Scholar 

  24. WANG J T, ZHANG Y K, CHEN J F, et al. Effect of laser shock peening on the high-temperature fatigue performance of 7075 aluminum alloy [J]. Materials Science and Engineering A, 2017, 704: 459–468. DOI: https://doi.org/10.1016/j.msea.2017.08.050.

    Article  Google Scholar 

  25. WALKER K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T69 aluminum. In effects of environment and complex load history on fatigue life [C]//ASTM International. West Conshohocken, PA, USA, 1970: 1–14. DOI: https://doi.org/10.1520/STP32032S.

  26. RIBEIRO R L, HILL M R. A benchmark fracture mechanics solution for a two-dimensional eigenstrain problem considering residual stress, the stress intensity factor, and superposition [J]. Engineering Fracture Mechanics, 2016, 163: 313–326. DOI: https://doi.org/10.1016/j.engfracmech.2016.06.007.

    Article  Google Scholar 

  27. LAIRD I G, COLLINS W K, BLICKENSDERFER R. Crack propagation and spalling of white cast iron balls subjected to repeated impacts [J]. Wear, 1988, 124(2): 217–235. DOI: https://doi.org/10.1016/0043-1648(88)90245-1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by LI Song-bai and LIU Yi-lun. The initial draft of the manuscript was written by LI Xiang. LI Xiang and LIANG Wei measured the experiment data and analyzed the measured data. YAN Hong-zhi and LIU Chi provided the support of finance. LI Song-bai and LI Xiang replied to reviewer’s comments and revised the final version.

Corresponding author

Correspondence to Song-bai Li  (李松柏).

Ethics declarations

All the authors declare that they have no conflict of interest.

Additional information

Foundation item: Project(52075552) supported by the National Natural Science Foundation of China; Project(kq2007085) supported by Changsha Municipal Natural Science Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Sb., Li, X., Liang, W. et al. Effects of laser shock peening on fatigue crack growth rate and fracture properties of AA2524 aluminum alloy. J. Cent. South Univ. 29, 848–859 (2022). https://doi.org/10.1007/s11771-022-4966-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4966-0

Key words

关键词

Navigation