Skip to main content
Log in

Effect of platform temperature on microstructure and corrosion resistance of selective laser melted Al-Mg-Sc alloy plate

基板温度对Al-Mg-Sc合金板材微观组织与耐蚀性能的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The Al-3.40Mg-1.08Sc alloy plates were manufactured by selective laser melting (SLM) at platform temperatures of 35 °C and 200 °C, respectively, and the corrosion performance of them was studied along height direction. The results show that the corrosion resistance of the alloy plate built at platform temperature of 35 °C along height direction is basically the same due to a uniform microstructure; While the corrosion resistance of the alloy plate built at platform temperature of 200 °C along height direction is different. The evolution of microstructure and the distribution of secondary phases are investigated, and the results show that the Cu-rich phases in alloy play a key role on corrosion performance. At higher platform temperature, the cooling rate is relative slow and a certain degree of in situ ageing leads to the significantly different distribution of Cu-rich phases along grain boundary. Specimens built at the platform temperature of 200 °C are inclined to locate at the crossed grain boundary, rather than continuous segregation of Cu-rich phases along grain boundary that is built at platform temperature of 35 °C. Therefore, the corrosion resistance of Al-3.40Mg-1.08Sc alloy plate manufactured at platform temperature of 200 °C is higher, and presents a gradually decreasing trend along height direction.

摘要

采用激光选区熔化技术分别在基板温度35 °C和200 °C条件下制备了Al-3.40Mg−1.08Sc合金板材, 并对其沿高度方向上的耐蚀性能进行了研究. 结果表明, 在基板温度35 °C下制备的合金板材沿高度方向的微观组织均匀, 腐蚀抗性基本一致. 而在基板温度200 °C下制备的合金板材沿高度方向的耐蚀性不同. 通过对微观组织演变与第二相的分布特征进行分析, 发现合金内部富铜相对合金耐蚀性能有重要影响. 在较高的基板温度下, 相对较慢的冷却速度及一定程度的原位时效会导致沿晶界富铜相分布的显著不同, 在基板温度200 °C的试样中富铜相更倾向于在交叉晶界处分布, 而不是像35 °C制备的试样沿晶界连续分布. 因此, Al3.40Mg-1.08Sc 合金板材在基板温度200 °C下的抗腐蚀性更佳, 并沿高度方向呈现逐步降低的趋势.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SPIERINGS A B, DAWSON K, UGGOWITZER P J, et al. Influence of SLM scan-speed on microstructure, precipitation of Al3Sc particles and mechanical properties in Sc- and Zr-modified Al−Mg alloys [J]. Materials & Design, 2018, 140: 134–143. DOI: https://doi.org/10.1016/j.matdes.2017.11.053.

    Article  Google Scholar 

  2. WANG Yin, WANG Yue-ting, LI Rui-di, et al. Hall-Petch relationship in selective laser melting additively manufactured metals: Using grain or cell size? [J]. Journal of Central South University, 2021, 28(4): 1043–1057. DOI: https://doi.org/10.1007/s11771-021-4678-x.

    Article  MathSciNet  Google Scholar 

  3. SCHAEDLER T, JACOBSEN A J, CARTER W B. Toward lighter, stiffer materials [J]. Science, 2013, 341: 1181–1182. DOI: https://doi.org/10.1126/science.1243996.

    Article  Google Scholar 

  4. ZHANG Han, GU Dong-dong, YANG Jian-kai, et al. Selective laser melting of rare earth element Sc modified aluminum alloy: Thermodynamics of precipitation behavior and its influence on mechanical properties [J]. Additive Manufacturing, 2018, 23: 1–12. DOI: https://doi.org/10.1016/j.addma.2018.07.002.

    Article  Google Scholar 

  5. RAO Heng, GIET S, YANG Kun, et al. The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting [J]. Materials & Design, 2016, 109: 334–346. DOI: https://doi.org/10.1016/j.matdes.2016.07.009.

    Article  Google Scholar 

  6. GU D, MEINERS W, WISSENBACH K, et al. Laser additive manufacturing of metallic components: Materials, processes and mechanisms [J]. International Materials Reviews, 2012, 57: 133–164. DOI: https://doi.org/10.1179/1743280411Y.0000000014.

    Article  Google Scholar 

  7. TONELLI L, FORTUNATO A, CESCHINI L. CoCr alloy processed by Selective Laser Melting (SLM): Effect of Laser Energy Density on microstructure, surface morphology, and hardness [J]. Journal of Manufacturing Processes, 2020, 52: 106–119. DOI: https://doi.org/10.1016/j.jmapro.2020.01.052.

    Article  Google Scholar 

  8. ZHOU Yan, DUAN Long-chen, WEN Shi-feng, et al. Enhanced micro-hardness and wear resistance of Al−15Si/TiC fabricated by selective laser melting [J]. Composites Communications, 2018, 10: 64–67. DOI: https://doi.org/10.1016/j.coco.2018.06.009.

    Article  Google Scholar 

  9. KAPLANSKII Y Y, SENTYURINA Z A, LOGINOV P A, et al. Microstructure and mechanical properties of the (Fe, Ni) Al-based alloy produced by SLM and HIP of spherical composite powder [J]. Materials Science and Engineering A, 2019, 743: 567–580. DOI: https://doi.org/10.1016/j.msea.2018.11.104.

    Article  Google Scholar 

  10. ZHANG Pei-lei, JIA Zhi-yuan, YAN Hua, et al. Effect of deposition rate on microstructure and mechanical properties of wire arc additive manufacturing of Ti−6Al−4V components [J]. Journal of Central South University, 2021, 28(4): 1100–1110. DOI: https://doi.org/10.1007/s11771-021-4683-0.

    Article  Google Scholar 

  11. KIMURA T, NAKAMOTO T, OZAKI T, et al. Microstructural formation and characterization mechanisms of selective laser melted Al−Si−Mg alloys with increasing magnesium content [J]. Materials Science and Engineering A, 2019, 754: 786–798. DOI: https://doi.org/10.1016/j.msea.2019.02.015.

    Article  Google Scholar 

  12. KANG Nan, CODDET P, DEMBINSKI L, et al. Microstructure and strength analysis of eutectic Al−Si alloy in situ manufactured using selective laser melting from elemental powder mixture [J]. Journal of Alloys and Compounds, 2017, 691: 316–322. DOI: https://doi.org/10.1016/j.jallcom.2016.08.249.

    Article  Google Scholar 

  13. BI Jiang, LEI Zheng-long, CHEN Yan-bin, et al. Microstructure and mechanical properties of a novel Sc and Zr modified 7075 aluminum alloy prepared by selective laser melting [J]. Materials Science and Engineering A, 2019, 768: 138478. DOI: https://doi.org/10.1016/j.msea.2019.138478.

    Article  Google Scholar 

  14. MA Ru-long, PENG Chao-qun, CAI Zhi-yong, et al. Effect of bimodal microstructure on the tensile properties of selective laser melt Al−Mg−Sc−Zr alloy [J]. Journal of Alloys and Compounds, 2020, 815: 152422. DOI: https://doi.org/10.1016/j.jallcom.2019.152422.

    Article  Google Scholar 

  15. JIA Qing-bo, ZHANG Fan, ROMETSCH P, et al. Precipitation kinetics, microstructure evolution and mechanical behavior of a developed Al−Mn−Sc alloy fabricated by selective laser melting [J]. Acta Materialia, 2020, 193: 239–251. DOI: https://doi.org/10.1016/j.actamat.2020.04.015.

    Article  Google Scholar 

  16. ZHOU S Y, SU Y, WANG H, et al. Selective laser melting additive manufacturing of 7xxx series Al−Zn−Mg−Cu alloy: Cracking elimination by co-incorporation of Si and TiB2 [J]. Additive Manufacturing, 2020, 36: 101458. DOI: https://doi.org/10.1016/j.addma.2020.101458.

    Article  Google Scholar 

  17. YANG, SHI Yun-jia, PALM F, et al. Columnar to equiaxed transition in Al−Mg (−Sc)−Zr alloys produced by selective laser melting [J]. Scripta Materialia, 2018, 145: 113–117. DOI: https://doi.org/10.1016/j.scriptamat.2017.10.021.

    Article  Google Scholar 

  18. SHI Yun-jia, YANG Kun, KAIRY S K, et al. Effect of platform temperature on the porosity, microstructure and mechanical properties of an Al−Mg−Sc−Zr alloy fabricated by selective laser melting [J]. Materials Science and Engineering A, 2018, 732: 41–52. DOI: https://doi.org/10.1016/j.msea.2018.06.049.

    Article  Google Scholar 

  19. VIGNESH R V, PADMANABAN R. Intergranular corrosion susceptibility of friction stir processed aluminium alloy 5083 [J]. Materials Today: Proceedings, 2018, 5(8): 16443–16452. DOI: https://doi.org/10.1016/j.matpr.2018.05.143.

    Google Scholar 

  20. GB/T7998 — 2005. Test method for inter-granular corrosion of aluminum alloys [S]. (in Chinese).

  21. KOUTNY D, SKULINA D, PANTĚLEJEV L, et al. Processing of Al−Sc aluminum alloy using SLM technology [J]. Procedia CIRP, 2018, 74: 44–48. DOI: https://doi.org/10.1016/j.procir.2018.08.027.

    Article  Google Scholar 

  22. LI Rui-di, WANG Min-bo, YUAN Tie-chui, et al. Selective laser melting of a novel Sc and Zr modified Al−6.2 Mg alloy: Processing, microstructure, and properties [J]. Powder Technology, 2017, 319: 117–128. DOI: https://doi.org/10.1016/j.powtec.2017.06.050.

    Article  Google Scholar 

  23. SPIERINGS A B, DAWSON K, HEELING T, et al. Microstructural features of Sc- and Zr-modified Al−Mg alloys processed by selective laser melting [J]. Materials & Design, 2017, 115: 52–63. DOI: https://doi.org/10.1016/j.matdes.2016.11.040.

    Article  Google Scholar 

  24. LIU Peng, HU Jia-ying, LI Huai-xue, et al. Effect of heat treatment on microstructure, hardness and corrosion resistance of 7075 Al alloys fabricated by SLM [J]. Journal of Manufacturing Processes, 2020, 60: 578–585. DOI: https://doi.org/10.1016/j.jmapro.2020.10.071.

    Article  Google Scholar 

  25. SHI Yun-jia, PAN Qing-lin, LI Meng-jia, et al. Effect of Sc and Zr additions on corrosion behaviour of Al−Zn−Mg−Cu alloys [J]. Journal of Alloys and Compounds, 2014, 612: 42–50. DOI: https://doi.org/10.1016/j.jallcom.2014.05.128.

    Article  Google Scholar 

  26. POSADA M, MURR L E, NIOU C S, et al. Exfoliation and related microstructures in 2024 aluminum body skins on aging aircraft [J]. Materials Characterization, 1997, 38(4, 5): 259–272. DOI: https://doi.org/10.1016/S1044-5803(97)00083-1.

    Article  Google Scholar 

  27. LI Chen, PAN Qing-lin, SHI Yun-jia, et al. Influence of aging temperature on corrosion behavior of Al−Zn−Mg−Sc−Zr alloy [J]. Materials & Design, 2014, 55: 551–559. DOI: https://doi.org/10.1016/j.matdes.2013.10.018.

    Article  Google Scholar 

  28. ZHANG Han, GU Dong-dong, DAI Dong-hua, et al. Influence of scanning strategy and parameter on microstructural feature, residual stress and performance of Sc and Zr modified Al−Mg alloy produced by selective laser melting [J]. Materials Science and Engineering A, 2020, 788: 139593. DOI: https://doi.org/10.1016/j.msea.2020.139593.

    Article  Google Scholar 

  29. GU Dong-dong, ZHANG Han, DAI Dong-hua, et al. Anisotropic corrosion behavior of Sc and Zr modified Al−Mg alloy produced by selective laser melting [J]. Corrosion Science, 2020, 170: 108657. DOI: https://doi.org/10.1016/j.corsci.2020.108657.

    Article  Google Scholar 

  30. BIRBILIS N, BUCHHEIT R G. Electrochemical characteristics of intermetallic phases in aluminum alloys [J]. Journal of the Electrochemical Society, 2005, 152: 141–151.

    Article  Google Scholar 

  31. WANG Pei, GEBERT A, YAN Lei, et al. Corrosion of Al−3.5Cu−1.5 Mg−1Si alloy prepared by selective laser melting and heat treatment [J]. Intermetallics, 2020, 124: 106871. DOI: https://doi.org/10.1016/j.intermet.2020.106871.

    Article  Google Scholar 

  32. CHEMIN A, MARQUES D, BISANHA L, et al. Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys [J]. Materials & Design, 2014, 53: 118–123. DOI: https://doi.org/10.1016/j.matdes.2013.07.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The overarching research goals were developed by WANG Jie-fang and ROMETSCH Paul. The writing, review, editing and conceptualization of the manuscript are done by LI Meng-jia and SHI Yun-jia. LIAN Juan is in charge of the preparation of specimens, the operation of corrosion resistance tests and the analysis of measured data. CAO Ling-fei is responsible for the characterization of STEM and 3DAP. ZHANG Guo-peng conducted and analyzed the mechanical performance results. All authors replied to reviewers’ comments and revised the final version.

Corresponding author

Correspondence to Yun-jia Shi  (史运嘉).

Ethics declarations

LI Meng-jia, LIAN Juan, CAO Ling-fei, SHI Yun-jia, ZHANG Guo-peng, WANG Jie-fang and ROMETSCH Paul declare that they have no conflict of interest.

Additional information

Foundation item: Project(51901207) supported by the National Natural Science Foundation of China; Project(2018M632796) supported by the China Postdoctoral Science Foundation; Projects(19A430024, 21A430037) supported by the Plan of Henan Key Scientific Research Project of Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Mj., Lian, J., Cao, Lf. et al. Effect of platform temperature on microstructure and corrosion resistance of selective laser melted Al-Mg-Sc alloy plate. J. Cent. South Univ. 29, 999–1014 (2022). https://doi.org/10.1007/s11771-022-4959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4959-z

Key words

关键词

Navigation