Skip to main content
Log in

Numerical investigation of effect of eccentric decoupled charge structure on blasting-induced rock damage

偏心装药结构岩石爆破损伤影响的数值研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Eccentric decoupling blasting is commonly used in underground excavation. Determination of perimeter hole parameters (such as the blasthole diameter, spacing, and burden) based on an eccentric charge structure is vital for achieving an excellent smooth blasting effect. In this paper, the Riedel-Hiermaier-Thoma (RHT) model was employed to study rock mass damage under smooth blasting. Firstly, the parameters of the RHT model were calibrated by using the existing SHPB experiment, which were then verified by the existing blasting experiment results. Secondly, the influence of different charge structures on the blasting effect was investigated using the RHT model. The simulation results indicated that eccentric charge blasting has an obvious pressure eccentricity effect. Finally, to improve the blasting effect, the smooth blasting parameters were optimized based on an eccentric charge structure. The overbreak and underbreak phenomena were effectively controlled, and a good blasting effect was achieved with the optimized blasting parameters.

摘要

偏心不耦合爆破是地下开挖中常用的爆破方法。基于偏心装药结构的周边孔参数(如炮孔直径、 间距、装药量等)的确定对获得良好的光面爆破效果至关重要。本文采用Riedel-Hiermaier-Thoma (RHT)模型研究了装药结构对岩体爆破损伤的影响。首先, 利用已有的SHPB实验对RHT模型的参数 进行了标定。其次, 通过室内爆破实验结果对标定参数的合理性进行了验证。然后, 利用RHT模型研 究了不同装药结构对爆破效果的影响。模拟结果表明, 偏心爆破具有明显的压力偏心效应。最后, 为 提高爆破效果, 在偏心装药结构的基础上对光面爆破参数进行了优化。通过优化爆破参数, 有效地控 制了超欠挖现象, 取得了良好的爆破效果。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MINH N N, CAO Ping, LIU Zhi-zhen. Contour blasting parameters by using a tunnel blast design mode [J]. Journal of Central South University, 2021, 28(1): 100–111. DOI: https://doi.org/10.1007/s11771-021-4589-x.

    Article  Google Scholar 

  2. VERMA H K, SAMADHIYA N K, SINGH M, et al. Blast induced rock mass damage around tunnels [J]. Tunnelling and Underground Space Technology, 2018, 71: 149–158. DOI: https://doi.org/10.1016/j.tust.2017.08.019.

    Article  Google Scholar 

  3. LIU Ke-wei, LI Xiao-han, LI Xi-bing, et al. Characteristics and mechanisms of strain waves generated in rock by cylindrical explosive charges [J]. Journal of Central South University, 2016, 23(11): 2951–2957. DOI: https://doi.org/10.1007/s11771-016-3359-7.

    Article  Google Scholar 

  4. TAYLOR L M, CHEN Er-ping, KUSZMAUL J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading [J]. Computer Methods in Applied Mechanics and Engineering, 1986, 55(3): 301–320. DOI: https://doi.org/10.1016/0045-7825(86)90057-5.

    Article  MATH  Google Scholar 

  5. GRADY D E, KIPP M E. Continuum modelling of explosive fracture in oil shale [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1980, 17(3): 147–157. DOI: https://doi.org/10.1016/0148-9062(80)91361-3.

    Article  Google Scholar 

  6. LUO Yong, GONG Feng-qiang, LI Xi-bing, et al. Experimental simulation investigation of influence of depth on spalling characteristics in circular hard rock tunnel [J]. Journal of Central South University, 2020, 27(3): 891–910. DOI: https://doi.org/10.1007/s11771-020-4339-5.

    Article  Google Scholar 

  7. DEHGHAN BANADAKI M M, MOHANTY B. Numerical simulation of stress wave induced fractures in rock [J]. International Journal of Impact Engineering, 2012, 40–41: 16–25. DOI: https://doi.org/10.1016/j.ijimpeng.2011.08.010.

    Article  Google Scholar 

  8. PAN Cheng, LI Xing, HE Lei, et al. Study on the effect of micro-geometric heterogeneity on mechanical properties of brittle rock using a grain-based discrete element method coupling with the cohesive zone model [J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 140: 104680. DOI: https://doi.org/10.1016/j.ijrmms.2021.104680.

    Article  Google Scholar 

  9. PAN Cheng, LI Xing, LI Jian-chun, et al. Numerical investigation of blast-induced fractures in granite: Insights from a hybrid LS-DYNA and UDEC grain-based discrete element method [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(2): 1–18. DOI: https://doi.org/10.1007/s40948-021-00253-6.

    Article  MathSciNet  Google Scholar 

  10. LI Xing, ZHANG Qian-bing, HE Lei, et al. Particle-based numerical manifold method to model dynamic fracture process in rock blasting [J]. International Journal of Geomechanics, 2017, 17(5): 1–20. DOI: https://doi.org/10.1061/(asce)gm.1943-5622.0000748.

    Article  Google Scholar 

  11. MA G W, AN X M. Numerical simulation of blasting-induced rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 966–975. DOI: https://doi.org/10.1016/j.ijrmms.2007.12.002.

    Article  Google Scholar 

  12. ZHU Zhe-ming, MOHANTY B, XIE He-ping. Numerical investigation of blasting-induced crack initiation and propagation in rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(3): 412–424. DOI: https://doi.org/10.1016/j.ijrmms.2006.09.002.

    Article  Google Scholar 

  13. YANG Jia-cai, LIU Ke-wei, LI Xu-dong, et al. Stress initialization methods for dynamic numerical simulation of rock mass with high in situ stress [J]. Journal of Central South University, 2020, 27(10): 3149–3162. DOI: https://doi.org/10.1007/s11771-020-4535-3.

    Article  Google Scholar 

  14. YOON J S, ZANG A, STEPHANSSON O. Simulating fracture and friction of Aue granite under confined asymmetric compressive test using clumped particle model [J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49: 68–83. DOI: https://doi.org/10.1016/j.ijrmms.2011.11.004.

    Article  Google Scholar 

  15. WANG Xiao, WEN Zhi-jie, JIANG Yu-jing, et al. Experimental study on mechanical and acoustic emission characteristics of rock-like material under non-uniformly distributed loads [J]. Rock Mechanics and Rock Engineering, 2018, 51(3): 729–745. DOI: https://doi.org/10.1007/s00603-017-1363-3.

    Article  Google Scholar 

  16. GOVINDJEE S, KAY G J, SIMO J C. Anisotropic modelling and numerical simulation of brittle damage in concrete [J]. International Journal for Numerical Methods in Engineering, 1995, 38(21): 3611–3633. DOI:https://doi.org/10.1002/nme.1620382105.

    Article  MATH  Google Scholar 

  17. KONG Xiang-zhen, FANG Qin, WU Hao, et al. Numerical predictions of cratering and scabbing in concrete slabs subjected to projectile impact using a modified version of HJC material model [J]. International Journal of Impact Engineering, 2016, 95: 61–71. DOI: https://doi.org/10.1016/j.ijimpeng.2016.04.014.

    Article  Google Scholar 

  18. XIE L X, LU W B, ZHANG Q B, et al. Analysis of damage mechanisms and optimization of cut blasting design under high in situ stresses [J]. Tunnelling and Underground Space Technology, 2017, 66: 19–33. DOI: https://doi.org/10.1016/j.tust.2017.03.009.

    Article  Google Scholar 

  19. XIE L X, LU W B, ZHANG Q B, et al. Damage evolution mechanisms of rock in deep tunnels induced by cut blasting [J]. Tunnelling and Underground Space Technology, 2016, 58: 257–270. DOI: https://doi.org/10.1016/j.tust.2016.06.004.

    Article  Google Scholar 

  20. LI Xi-bing, WENG Lei. Numerical investigation on fracturing behaviors of deep-buried opening under dynamic disturbance [J]. Tunnelling and Underground Space Technology, 2016, 54: 61–72. DOI: https://doi.org/10.1016/j.tust.2016.01.028.

    Article  Google Scholar 

  21. TAO Ming, LI Xi-bing, WU Cheng-qing. 3D numerical model for dynamic loading-induced multiple fracture zones around underground cavity faces [J]. Computers and Geotechnics, 2013, 54: 33–45. DOI: https://doi.org/10.1016/j.compgeo.2013.06.002.

    Article  Google Scholar 

  22. YI Chang-ping, JOHANSSON D, GREBERG J. Effects of in situ stresses on the fracturing of rock by blasting [J]. Computers and Geotechnics, 2018, 104: 321–330. DOI: https://doi.org/10.1016/j.compgeo.2017.12.004.

    Article  Google Scholar 

  23. YI Chang-ping, SJÖBERG J, JOHANSSON D. Numerical modelling for blast-induced fragmentation in sublevel caving mines [J]. Tunnelling and Underground Space Technology, 2017, 68: 167–173. DOI: https://doi.org/10.1016/j.tust.2017.05.030.

    Article  Google Scholar 

  24. JAYASINGHE L B, SHANG Jun-long, ZHAO Zhi-ye, et al. Numerical investigation into the blasting-induced damage characteristics of rocks considering the role of in situ stresses and discontinuity persistence [J]. Computers and Geotechnics, 2019, 116: 103207. DOI: https://doi.org/10.1016/j.compgeo.2019.103207.

    Article  Google Scholar 

  25. HALLQUIST J. Keyword user’s manual [M]. California: Livermore Software Technology, 2012.

    Google Scholar 

  26. WANG Zhi-liang, LI Yong-chi, SHEN R F. Numerical simulation of tensile damage and blast crater in brittle rock due to underground explosion [J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(5): 730–738. DOI: https://doi.org/10.1016/j.ijrmms.2006.11.004.

    Article  Google Scholar 

  27. IQBAL M J, MOHANTY B. Experimental calibration of stress intensity factors of the ISRM suggested cracked chevron-notched Brazilian disc specimen used for determination of mode-I fracture toughness [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43(8): 1270–1276. DOI: https://doi.org/10.1016/j.ijrmms.2006.04.014.

    Article  Google Scholar 

  28. HANSSON H. Warhead penetration in concrete protective structures [D]. Stockholm: Royal Institute of Technology, 2011.

    Google Scholar 

  29. RIEDEL W, WICKLEIN M, THOMA K. Shock properties of conventional and high strength concrete: Experimental and mesomechanical analysis [J]. International Journal of Impact Engineering, 2008, 35(3): 155–171. DOI: https://doi.org/10.1016/j.ijimpeng.2007.02.001.

    Article  Google Scholar 

  30. MARSH S P. LASL Shock Hugoniot data [M]. London: University of California Press, 1980.

    Google Scholar 

  31. DEHGHAN BANADAKI M M. Stress-wave induced fracture in rock due to explosive action [D]. Toronto: University of Toronto (Canada), 2010.

    Google Scholar 

  32. HOKE E, BROWN E T. Underground Excavations in Rock [M]. London: Institution of Mining and Metallurg, 1980.

    Google Scholar 

  33. TU Zhen-guo, LU Yong. Modifications of RHT material model for improved numerical simulation of dynamic response of concrete [J]. International Journal of Impact Engineering, 2010, 37(10): 1072–1082. DOI: https://doi.org/10.1016/j.ijimpeng.2010.04.004.

    Article  Google Scholar 

  34. WANG Yuan-nian, TONON F. Dynamic validation of a discrete element code in modeling rock fragmentation [J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48(4): 535–545. DOI: https://doi.org/10.1016/j.ijrmms.2011.02.003.

    Article  Google Scholar 

  35. YUAN Fu-ping, PRAKASH V, TULLIS T. Origin of pulverized rocks during earthquake fault rupture [J]. Journal of Geophysical Research, 2011, 116(B6): B06309. DOI: https://doi.org/10.1029/2010jb007721.

    Article  Google Scholar 

  36. XIA K, NASSERI M H B, MOHANTY B, et al. Effects of microstructures on dynamic compression of Barre granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(6): 879–887. DOI: https://doi.org/10.1016/j.ijrmms.2007.09.013.

    Article  Google Scholar 

  37. LI Gang, CHEN Zheng-han, XIE Yun, et al. Test research on dynamic characteristics of Three Gorges granite under high strain rate [J]. Rock and Soil Mechanics, 2007, 28(9): 1833–1840. DOI: https://doi.org/10.16285/j.rsm.2007.09.023. (in Chinese)

    Google Scholar 

  38. LI X B, LOK T S, ZHAO J. Dynamic characteristics of granite subjected to intermediate loading rate [J]. Rock Mechanics and Rock Engineering, 2005, 38(1): 21–39. DOI: https://doi.org/10.1007/s00603-004-0030-7.

    Article  Google Scholar 

  39. DOAN M L, GARY G. Rock pulverization at high strain rate near the San Andreas fault [J]. Nature Geoscience, 2009, 2(10): 709–712. DOI: https://doi.org/10.1038/ngeo640.

    Article  Google Scholar 

  40. ZHAO J, LI H B, WU M B, et al. Dynamic uniaxial compression tests on a granite [J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36(2): 273–277. DOI: https://doi.org/10.1016/S0148-9062(99)00008-X.

    Article  Google Scholar 

  41. MASUDA K, MIZUTANI H, YAMADA I. Experimental study of strain-rate dependence and pressure dependence of failure properties of granite [J]. Journal of Physics the Earth, 1987, 35(1): 37–66. DOI: https://doi.org/10.4294/jpe1952.35.37.

    Article  Google Scholar 

  42. GOLDSMITH W, SACKMAN J L, EWERTS C. Static and dynamic fracture strength of Barre granite [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1976, 13(11): 303–309. DOI: https://doi.org/10.1016/0148-9062(76)91829-5.

    Article  Google Scholar 

  43. GREEN S J, PERKINS R D. Uniaxial compression tests at varying strain rates on three geologic materials [C]// The 10th U. S. Symposium on Rock Mechanics (USRMS), Austin, Texas, 1968.

  44. KUMAR A. The effect of stress rate and temperature on the strength of basalt and granite [J]. Geophysics, 1968, 33(3): 501–510. DOI: https://doi.org/10.1190/1.1439947.

    Article  Google Scholar 

  45. WANG Yao, WU Sheng-xing, ZHOU Ji-kai, et al. Experimental study of dynamic axial tensile mechanical properties of granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11): 2328–2336. DOI: https://doi.org/1000-6915(2010)11-2328-09. (in Chinese)

    Google Scholar 

  46. ZHAO J, LI H B. Experimental determination of dynamic tensile properties of a granite [J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(5): 861–866. DOI: https://doi.org/10.1016/s1365-1609(00)00015-0.

    Article  Google Scholar 

  47. DUTTA P K, KIM K. High-strain-rate tensile behavior of sedimentary and igneous rocks at low temperatures [R]. U.S. Army Corps of Engineers, Cold Regions Research & Engineering Laboratory, 1993.

  48. TAWADROUS A. Hard rocks under high strain-rate loading [D]. Kingston: Queen’s University (Canada), 2011.

    Google Scholar 

  49. CHO S H, OGATA Y, KANEKO K. Strain-rate dependency of the dynamic tensile strength of rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(5): 763–777. DOI: https://doi.org/10.1016/s1365-1609(03)00072-8.

    Article  Google Scholar 

  50. ARZUA J, ALEJANO LR. Dilation in granite during servo-controlled triaxial strength tests [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 61: 43–56. DOI: https://doi.org/10.1016/j.ijrmms.2013.02.007.

    Article  Google Scholar 

  51. YANG R, BAWDEN W F, KATSABANIS P D. A new constitutive model for blast damage [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996, 33(3): 245–254. DOI: https://doi.org/10.1016/0148-9062(95)00064-X.

    Article  Google Scholar 

  52. YILMAZ O, UNLU T. Three dimensional numerical rock damage analysis under blasting load [J]. Tunnelling and Underground Space Technology, 2013, 38: 266–278. DOI: https://doi.org/10.1016/j.tust.2013.07.007.

    Article  Google Scholar 

  53. DONZE F V, BOUCHEZ J, MAGNIER S A. Modeling fractures in rock blasting [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(8): 1153–1163. DOI: https://doi.org/10.1016/S1365-1609(97)80068-8.

    Article  Google Scholar 

  54. LONG Yong, ZHU Chuan-xian, WANG Ming-kuan. Application of smooth blasting technology in Changlongshan pumping power station [J]. Engineering Blasting, 2017, 23(4): 75–81. DOI: https://doi.org/10.3969/j.issn.1006-7051.2017.04.016. (in Chinese)

    Google Scholar 

Download references

Funding

Projects(11802058, 52074262) supported by the National Natural Science Foundation of China; Projects(BK20170670, BK20180651) supported by the Jiangsu Youth Foundation, China; Project(2020QN06) supported by the Fundamental Research Funds for the Central Universities, China; Project(SKLGDUEK1803) supported by the State Key Laboratory for Geomechanics and Deep Underground Engineering, China; Project supported by the Mass Entrepreneurship and Innovation Project of Jiangsu, China

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-xiang Xie  (谢理想).

Additional information

Contributors

PAN Cheng provided the concept and wrote the first draft of manuscript. XIE Li-xiang reviewed and edited the draft of manuscript and provided financial support. LI Xing reviewed and edited the draft of manuscript and provided financial support. LIU kai edited the draft of manuscript. GAO Pengfei validated the proposed method with filed experiments. TIAN Long-gang provided financial support.

Conflict of interest

PAN Cheng, XIE Li-xiang, LI Xing, LIU Kai, GAO Peng-fei, TIAN Long-gang declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Xie, Lx., Li, X. et al. Numerical investigation of effect of eccentric decoupled charge structure on blasting-induced rock damage. J. Cent. South Univ. 29, 663–679 (2022). https://doi.org/10.1007/s11771-022-4947-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-022-4947-3

Key words

关键词

Navigation